Project description:The goal of this study was to use microarrays to identify genes differentially regulated under conditions of formaldehyde stress relative to two other stress conditions (oxidative, osmotic) in an effort to identify genes that might be involved in a formaldehyde-specific stress response, rather than a general stress response, in the model methylotroph Methylobacterium extorquens AM1.
Project description:The goal of this study was to use microarrays to identify genes differentially regulated under conditions of formaldehyde stress relative to two other stress conditions (oxidative, osmotic) in an effort to identify genes that might be involved in a formaldehyde-specific stress response, rather than a general stress response, in the model methylotroph Methylobacterium extorquens AM1. Two color experiment, three treatments, three biological replicates per treatment, and two technical (dye swap) replicates per biological replicate: formaldehyde-stressed vs. unstressed cells; oxidative-stressed vs. unstressed cells; and osmotic-stressed vs. unstressed cells.
Project description:We report RNA-seq datasets profiling the transcriptional response to a sudden change in growth substrate, from succinate to ethylamine. This detailed combined dataset provides a dynamic assessment of the transcriptional response to a metabolic perturbation. These datasets are the first reported RNA-seq datasets for gene expression in Methylobacterium extorquens AM1