Project description:Background: Sepsis can lead to multiple organ damage, and the heart is one of the most vulnerable organs. Vagal nerve stimulation can reduce myocardial injury in sepsis and improve survival rate. However, the relative effect of disparate cell populations on sepsis induced myocardial dysfunction and the low-level tragus stimulation on it, remain unclear. Methods: We used the cardiac single-cell transcriptomic strategy to characterize the cardiac cell population and the network of cells that forms the heart. And we selected all cardiac macrophage from CD45+ cells using single-cell mRNA sequencing data. Then we used echocardiography performing, western blot and immunofluorescence and immunohistochemical technology to verify the data of the single-cell mRNA sequencing results. Results: In single-cell mRNA sequencing data, our analysis provides a comprehensive map of the cardiac cellular landscape uncovering multiple cell populations that contribute to sepsis induced myocardial dysfunction under low-level tragus stimulation. Pseudo timing analysis in single-cell sequencing showed that low level vagal nerve stimulation could induce the transformation of cardiac monocytes into M2 macrophages and play an anti-inflammatory role. After low-level tragus stimulation, the expression of α7nAChR in the heart tissue increased significantly. Echocardiography showed that low-level tragus stimulation could improve the cardiac function of septic myocardial injury of the mice. Comparing with the sepsis group, the expression of interleukin-1β in heart tissue of the mice in sepsis with low-level tragus stimulation group is significantly lower. Conclusion: Low-level tragus stimulation can improve sepsis-induced myocardial dysfunction by promoting cardiac monocytes to M2 macrophages. Goal of the study: In the present study, we aimed to screen macrophages, their crosstalk with other cells, and macrophages associated with cardiac injury and further verify their origins and roles in the septic myocardial injury process and low-level tragus stimulation (LL-TS) to treat septic myocardial dysfunction.
Project description:Constructing high-quality haplotype-resolved genome assemblies has substantially improved the ability to detect and characterize genetic variants. A targeted approach providing readily access to the rich information from haplotype-resolved genome assemblies will be appealing to groups of basic researchers and medical scientists focused on specific genomic regions. Here, using the 4.5 megabase, notoriously difficult-to-assemble major histocompatibility complex (MHC) region as an example, we demonstrated an approach to construct haplotype-resolved assembly of the targeted genomic region with the CRISPR-based enrichment. Compared to the results from haplotype-resolved genome assembly, our targeted approach achieved comparable completeness and accuracy with reduced computing complexity, sequencing cost, as well as the amount of starting materials. Moreover, using the targeted assembled personal MHC haplotypes as the reference both improves the quantification accuracy for sequencing data and enables allele-specific functional genomics analyses of the MHC region. Given its highly efficient use of resources, our approach can greatly facilitate population genetic studies of targeted regions, and may pave a new way to elucidate the molecular mechanisms in disease etiology.