Project description:Plants respond to environmental stresses by altering transcription of genes involved in the response. The chromatin modifier ATX1 influences gene expression and factors that modulate ATX1 activity would affect indirectly the expression of ATX1-regulated genes. Here, we demonstrate that dehydration is such a factor indicating that ATX1 is involved in the plantâs response to drought. In addition, we show that a hitherto unknown Arabidopsis gene, At3g10550, encodes MYO1, a phosphoinositide 3â-phosphatase related to the animal myotubularins. By a functional genomics approach, we show that ATX1 and MYO1 participate in overlapping drought-response pathways. The shared set of genes, representing the ultimate targets of an ATX1-MYO1 signaling mechanism responding to drought, provided insights into the relationship of the epigenetic factor and the lipid phosphatase from the other end of the response pathway. Keywords: control/treatment Arabidopsis thaliana Col0 wild type, atx1 mutant, and MYO-OX line RNA was isolated from control (watered) and treatment (water-deficit) samples for analysis on microarrays with two biological reps.
Project description:Plants respond to environmental stresses by altering transcription of genes involved in the response. The chromatin modifier ATX1 influences gene expression and factors that modulate ATX1 activity would affect indirectly the expression of ATX1-regulated genes. Here, we demonstrate that dehydration is such a factor indicating that ATX1 is involved in the plant’s response to drought. In addition, we show that a hitherto unknown Arabidopsis gene, At3g10550, encodes MYO1, a phosphoinositide 3’-phosphatase related to the animal myotubularins. By a functional genomics approach, we show that ATX1 and MYO1 participate in overlapping drought-response pathways. The shared set of genes, representing the ultimate targets of an ATX1-MYO1 signaling mechanism responding to drought, provided insights into the relationship of the epigenetic factor and the lipid phosphatase from the other end of the response pathway. Keywords: control/treatment
Project description:Transcriptional profiling of 16-day-old seedlings of Arabidopsis wild type control and mutants is performed using AligentM-bM-^@M-^Ys Whole Arabidopsis Gene Expression Microarray (4x44K). Two-condition experiment, seedlings of wild type control vs. Mutant sdg25, sdg26, sdg25 sdg26, atx1, sdg26 atx1, clf, sdg26 clf, ldl1 ldl2, sdg25 ldl1 ldl2 or sdg26 ldl1 ldl2. Three biological replicates: 3 control, 3 each of the ten mutants, independently grown under 12h light/ 12h dark photoperiods and harvested.
Project description:Transcriptional profiling of Arabidopsis thaliana cotyledons comparing ecotype Col-0 (Control) with lea13 T-DNA line to elucidate the response mechanism to drought stress conditions that rely on LEA protein function.
Project description:Methylation of H3 lysine 4 (H3K4me) marks transcribed elements of eukaryotic genome, and their distribution alters dynamically through developmental stages and environmental change. These dynamic regulations are likely achieved by combinatorial work of H3K4me writers, which multi-cellular organisms carry multiple copies of. To better understand the chromatin targeting mechanisms of H3K4 methyltransferase in plants, here we comparatively characterized the seven H3K4 methyltransferases in model plants Arabidopsis. This work clarified, in combination with previous results, ATX1-5 (TRX/TRR-type methyltransferase) localizes on loci with specific sets of chromatin modifications and DNA motifs. Notably, ATX3 localizes to binding motifs of ASR3 and RAP2.11 transcriptional factors and also directly interacts with those TFs. ATXR7(SET1-type) and ATXR3 (non-canonical H3K4 methyltransferase) seemed co-transcriptional. Interestingly, ATXR3, the major H3K4me3 methyltransferase in Arabidopsis, was not associated with COMPASS, which suggests H3K4me3 regulation in plants and animals is divergent. Our work provides a foundation for understanding the regulation of H3K4 methyltransferases in plants.