Project description:Loss of muscle mass occurs in a variety of diseases including cancer, chronic heart failure, AIDS, diabetes and renal failure, often aggravating pathological progression. Preventing muscle wasting by promoting muscle growth has been proposed as a possible therapeutic approach. Myostatin is an important negative modulator of muscle growth during myogenesis and myostatin inhibitors are attractive drug targets. However, the role of the myostatin pathway in adulthood and the transcription factors involved in the signaling are unclear. Moreover recent results confirm that other TGFβ members control muscle mass. Using genetic tools we perturbed this pathway in adult myofibers, in vivo, to characterize the downstream targets and their ability to control muscle mass. Smad2 and Smad3 are the transcription factors downstream of myostatin/TGFβ and induce an atrophy program which is MuRF1 independent and requires FoxO activity. Furthermore Smad2/3 inhibition promotes muscle hypertrophy independent of satellite cells but partially dependent of mTOR signalling. Thus myostatin and Akt pathways cross-talk at different levels. These findings point to myostatin inhibitors as good drugs to promote muscle growth during rehabilitation especially when they are combined with IGF1-Akt activators.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:The importance of unanchored Ub in innate immunity has been shown only for a limited number of unanchored Ub-interactors. We investigated what additional cellular factors interact with unanchored Ub and whether unanchored Ub plays a broader role in innate immunity. To identify unanchored Ub-interacting factors from murine lungs, we used His-tagged recombinant poly-Ub chains as bait. These chains were mixed with lung tissue lysates and protein complexes were isolated with Ni-NTA beads. Sample elutions were subjected to mass spectrometry (LC-MSMS) analysis.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:We analyzed the functional role of DOR (Diabetes and Obesity Regulated gene) (also named Tp53inp2) in skeletal muscle. We show that DOR has a direct impact on skeletal muscle mass in vivo. Thus, using different transgenic mouse models, we demonstrate that while muscle-specific DOR gain-of-function results in reduced muscle mass, loss-of-function causes muscle hypertrophy. DOR has been described as a protein with two different functions, i.e., a nuclear coactivator and an autophagy regulator (Baumgartner et. al., PLoS One, 2007; Francis et. al., Curr Biol, 2010; Mauvezin et. al., EMBO Rep, 2010; Nowak et. al., Mol Biol Cell, 2009). This is why we decided to analyze which of these two functions could explain the phenotype observed in our mice models. In this regard, we performed a transcriptomic analysis using microarrays looking for genes differentially expressed in the quadriceps muscle of WT and SKM-Tg mice as well as in C and SKM-KO animals. Surprisingly, only a reduced number of genes were dysregulated upon DOR manipulation and most of the genes underwent mild changes in expression. These data strongly suggest that DOR does not operate as a nuclear co-factor in mouse skeletal muscle under the conditions subjected to study. In contrast, DOR enhances basal autophagy in skeletal muscle and promotes muscle wasting when autophagy is a contributor to muscle loss. To determine the functional role of DOR in skeletal muscle, we generated transgenic mice (SKM-Tg) overexpressing DOR specifically in skeletal muscle under the Myosin-Light Chain 1 promoter/enhancer. The open reading frame of DOR was introduced in an EcoRI site in the MDAF2 vector, which contains a 1.5 kb fragment of the MLC1 promoter and 0.9 kb fragment of the MLC1/3 gene containing a 3' muscle enhancer element (Rosenthal et. al., PNAS, 1989; Otaegui et. al., FASEB J, 2003). The fragment obtained after the digestion of this construct with BssHII was the one used to generate both transgenic mouse lines. Nontransgenic littermates were used as controls for the transgenic animals (Wt). In addition, a muscle-specific DOR knock-out mouse line (SKM-KO) was also generated by crossing homozygous DOR loxP/loxP mice with a mouse strain expressing Cre recombinase under the control of the Myosin-Light Chain 1 promoter (Bothe et. al., Genesis, 2000). Deletion of exons 3 and 4 driven by Cre recombinase caused the ablation of DOR expression. Non-expressing Cre DOR loxP/loxP littermates were used as controls for knockout animals (C). Four-month-old male mice were used in all experiments. Mice were in a C57BL/6J pure genetic background.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.