Project description:FabR ChIP-chip on Salmonella enterica subsp. enterica serovar Typhimurium SL1344 using anti-Myc antibody against strain with chromosomally 9Myc-tagged FabR (IP samples) and wildtype strain (mock IP samples)
Project description:The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 and an isogenic ramA gene knockout mutant which contained ramA upon an IPTG-inducible over-expression plasmid.
Project description:To investigate the effects of MccY on Salmonella Typhimurium, Ton system genes mutants were constructed and RNA-seq analysis were performed.
Project description:Investigation of whole genome gene expression level changes in a Salmonella enterica serovar Typhimurium UK1 delta-iacP mutant, compared to the wild-type strain. IacP is resoponsible for the secretion of virulence effector proteins via the type III secretion system, thereby contributing the virulence of S. Typhimurium. The mutants analyzed in this study are further described in Kim et al. 2011. Role of Salmonella Pathogenicity Island 1 Protein IacP in Salmonella enterica Serovar Typhimurium Pathogenesis. Infection and Immunity 79(4):1440-1450 (PMID 21263021).
Project description:Investigation of whole genome gene expression level changes in a Salmonella enterica serovar Typhimurium 14028 delta GidA mutant The mutant described in this study is further analyzed in Shippy, D. C., N. M. Eakley, P. N. Bochsler, and A. A. Fadl. 2011. Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. Microb Pathog.
Project description:Salmonella has various mechanisms of small RNA-mediated gene regulation. In Salmonella enterica serovar Typhimurium, a novel intergenic transcript RaoN is involved in oxidative stress response which functions as one of the powerful antimicrobials in macrophage innate immunity. We note that the ∆raoN mutant is sensitive to hydrogen peroxide (5.0 mM). This finding provides insights into the function of RaoN as a regulator of oxidative stress response.
Project description:ChIP-on-chip analysis of RNAP and RpoD binding to the Salmonella enterica serovar Typhimurium chromosome demonstrated a high degree of overlap between RNAP and RpoD binding and provided us with important insights into the global distribution of these factors. Furthermore this data was correlated with information on the location of 1873 transcription start sites identified by RNA-Seq technology, thereby providing a detailed transcriptional map of Salmonella Typhimurium.
Project description:Bacterial transcription networks typically consist of hundreds of transcription factors and thousands of promoters. However, current attempts to map bacterial promoters have failed to report the true complexity of bacterial transcription. The differential RNA-seq (dRNA-seq) approaches only identified a subset of promoters because they involved few growth conditions. Here, we present a simplified approach for global promoter identification in bacteria, based upon the analysis of RNA-seq data from multiple environmental conditions. RNA was extracted from Salmonella enterica serovar Typhimurium (S. Typhimurium) grown in 22 different environmental conditions, which were devised to reflect the pathogenic lifestyle of S. Typhimurium. Individual RNA samples were combined into two pools for sequencing. In just two runs of strand-specific RNA-seq and dRNA-seq of the pooled sample we identified 3701 promoters (Pool sample). In further experiments, we found that individual in vitro conditions stimulate the expression of about 60% of the S. Typhimurium genome, whereas the suite of 22 conditions induced expression of 87% of S. Typhimurium genes. We discovered environmental conditions that induce many genes within Salmonella pathogenicity islands and identified 78 new sRNAs. In S. Typhimurium there is now experimental evidence for 280 sRNAs, and we classified them in terms of location and Hfq-binding.