Project description:With regulatory roles in development, cell proliferation and disease, micro-RNA (miRNA) biology is of great importance and a potential key to novel RNA-based therapeutic regimens. Biochemically based sequencing approaches have provided robust means of uncovering miRNA binding landscapes on transcriptomes of various species. However, a current limitation to the therapeutic potential of miRNA biology in cattle is the lack of validated miRNAs targets. Here, we use cross-linking immunoprecipitation (CLIP) of the Argonaute (AGO) proteins and unambiguous miRNA-target identification through RNA chimeras to define a regulatory map of miRNA interactions in the cow (Bos taurus). The resulting interactome is the deepest reported to date for any species, demonstrating that comprehensive maps can be empirically obtained. We observe that bovine miRNA targeting principles are consistent with those observed in other mammals. Motif and structural analyses define expanded pairing rules with most interactions combining seed-based pairing with distinct, miRNA-specific patterns of auxiliary pairing. Further, miRNA-target chimeras had predictive value in evaluating true regulatory sites of the miR-17 family. Finally, we define miRNA-specific targeting for >5000 mRNAs and determine gene ontologies (GO) for these targets. This confirmed repression of genes important for embryonic development and cell cycle progress by the let-7 family, and repression of those involved in cell cycle arrest by the miR-17 family, but it also suggested a number of unappreciated miRNA functions. Our results provide a significant resource for transcriptomic understanding of bovine miRNA regulation, and demonstrate the power of experimental methods for establishing comprehensive interaction maps.
Project description:Coordinated interactions between ovarian granulosa and theca cells are required for female endocrine function and fertility. To elucidate these interactions the regulation of the granulosa and theca cell transcriptomes during bovine antral follicle development were investigated. Granulosa cells and theca cells were isolated from small (<5 mm), medium (5-10 mm), and large (>10 mm) antral bovine follicles. A microarray analysis of 24,000 bovine genes revealed that granulosa cells and theca cells each had gene sets specific to small, medium and large follicle cells. Transcripts regulated (i.e., minimally changed 1.5-fold) during antral follicle development for the granulosa cells involved 446 genes and for theca cells 248 genes. Only 28 regulated genes were common to both granulosa and theca cells. Regulated genes were functionally categorized with a focus on growth factors and cytokines expressed and regulated by the two cell types. Candidate regulatory growth factor proteins mediating both paracrine and autocrine cell-cell interactions include macrophage inflammatory protein (MIP1 beta), teratocarcinoma-derived growth factor 1 (TDGF1), stromal derived growth factor 1 (SDF1; i.e., CXCL12), growth differentiation factor 8 (GDF8), glia maturation factor gamma (GMFG), osteopontin (SPP1), angiopoietin 4 (ANGPT4), and chemokine ligands (CCL 2, 3, 5, and 8). The current study examined granulosa cell and theca cell regulated genes associated with bovine antral follicle development and identified candidate growth factors potentially involved in the regulation of cell-cell interactions required for ovarian function. Experiment Overall Design: Granulosacell RNA samples from three groups of follicles different in size - small, medium, and large (pooled untreated ovaries) are compared between each other. Each group has 2 separate biological replicas; each replica contained pooled RNA from 20-40 ovaries from 6-10 different animals.