Project description:Metformin is among the most prescribed anti-diabetic drugs, but the primary molecular mechanism by which metformin lowers blood glucose levels is unknown. Previous studies have proposed numerous mechanisms by which acute metformin lowers blood glucose, including the inhibition of mitochondrial complex I of the electron transport chain (ETC). Here, we used transgenic mice that globally express the Saccharomyces cerevisiae protein NDI1 to determine whether the glucose lowering effect of acute oral administration of metformin requires inhibition of mitochondrial complex I of the ETC in vivo. NDI1 is a yeast NADH dehydrogenase enzyme that complements the loss of mammalian mitochondrial complex I electron transport function and is insensitive to pharmacologic mitochondrial complex I inhibitors including metformin. We demonstrate that NDI1 expression attenuates metformin’s ability to lower blood glucose levels under standard chow and high-fat diet conditions. Our results indicate that acute oral administration of metformin targets mitochondrial complex I to lower blood glucose.
Project description:To investigate the differential expressed circRNAs, and even their biological functions in human proximal tubular epithelial (HK-2) cells induced by normal glucose, high levels of glucose and treatment of dapagliflozin, metformin and vildagliptin.
Project description:Objective: To investigate the effects of metformin on intestinal carbohydrate metabolism in vivo.
Method: Male mice preconditioned with a high-fat, high-sucrose diet were treated orally with metformin or a control solution for two weeks. Fructose metabolism, glucose production from fructose, and production of other fructose-derived metabolites were assessed using stably labeled fructose as a tracer.
Results: Metformin treatment decreased intestinal glucose levels and reduced incorporation of fructose-derived metabolites into glucose. This was associated with decreased intestinal fructose metabolism as indicated by decreased enterocyte F1P levels and diminished labeling of fructose-derived metabolites. Metformin also reduced fructose delivery to the liver. Proteomic analysis revealed that metformin coordinately down-regulated proteins involved carbohydrate metabolism including those involved in fructolysis and glucose production within intestinal tissue.
Conclusion: Metformin reduces intestinal fructose metabolism, and this is associated with broad-based changes in intestinal enzyme and protein levels involved in sugar metabolism indicating that metformin's effects on sugar metabolism are pleiotropic.
Project description:We analyzed non-atherosclerotic repair arteries gathered at coronary by-pass operations from 30 patients with type 2 diabetes, as well as from 30 age- and gender-matched non-diabetic individuals. Quantitative proteome analysis was done by iTRAQ-labelling and LC-MS/MS analysis on individual arterial samples. The amounts of the basement membrane (BM) components, alpha-1- and alpha-2- type IV collagen, gamma-1- and beta-2-laminin were significantly increased in patients with diabetes. Moreover, the expressions of basement membrane components and other vascular proteins were significantly lower among metformin users, as compared to non-users. Patients treated with or without metformin had similar levels of HbA1c, cholesterol and blood pressure. In addition, quantitative histomorphometry showed increased area fractions of collagen-stainable material in tunica intima and media among patients with diabetes.
Project description:Metformin is the most prescribed anti-diabetic medicine, and has also been shown to have other various benefits, such as anti-aging and anti-cancer effects. For clinical doses of metformin, it is known that AMPK plays a major role; however, the direct molecular target of metformin remains unclear. Here, we found that clinically relevant concentrations of metformin inhibits the lysosomal proton pump (v-ATPase), which has been shown to be a central node for AMPK activation upon glucose starvation. We synthesised a photoactive metformin probe, and identified that PEN2, a subunit of γ-secretases, is a binding partner of metformin with KD at micromolar levels. Metformin-bound PEN2 then forms a complex with ATP6AP1, a subunit of the v-ATPase, leading to inhibition of v-ATPase and activation of AMPK without affecting cellular AMP levels. Knockout of PEN2, or re-introduction of a PEN2 mutant that fails to bind ATP6AP1, blunts AMPK activation. In vivo, liver-specific knockout of PEN2 abolishes metformin-mediated reduction of hepatic fat content, and intestine-specific knockout of PEN2 impairs its glucose-lowering effects. Furthermore, knockdown of PEN2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds to PEN2, initiating a signalling route that intersects, via ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation, ensuring that metformin manifests therapeutic benefits without significant drawbacks in patients.
Project description:Metformin is now the most widely prescribed oral anti-diabetic agent worldwide, taken by over 150 million people annually. Although metformin has been used clinically to treat type 2 diabetes for over 60 years. Its mechanism of action remains only partially understood and controversial. In particular, this includes whether AMPK plays a role in metformin suppression of liver glucose production. To address this issue, we knocked out the AMPK catalytic alpha1 and alpha 2 subunits in the liver of HFD-fed adult homozygous mice. These mice were treated with a physiological relevent metformin dose (50 mg/kg/day) for 3 weeks. Liver samples were collected.
Project description:We analyzed non-atherosclerotic repair arteries gathered at coronary by-pass operations from 30 patients with type 2 diabetes, as well as from 30 age- and gender-matched non-diabetic individuals. Quantitative proteome analysis was done by iTRAQ-labelling and LC-MS/MS analysis on individual arterial samples. The amounts of the basement membrane (BM) components, alpha-1- and alpha-2- type IV collagen, gamma-1- and beta-2-laminin were significantly increased in patients with diabetes. Moreover, the expressions of basement membrane components and other vascular proteins were significantly lower among metformin users, as compared to non-users. Patients treated with or without metformin had similar levels of HbA1c, cholesterol and blood pressure. In addition, quantitative histomorphometry showed increased area fractions of collagen-stainable material in tunica intima and media among patients with diabetes.
Project description:Metformin is a well tolerated and often prescribed treatment for type 2 diabetes. However, the effect of metformin on gene expression in endothelial cells remains unknown. We used RNA-seq to profile gene expression in primary human aortic endothelial cells stimulated with metformin in normoglycaemic and hyperglycaemic conditions. We identified novel pathways in hyperglycaemic endothelial cells that may be involved in the development of endothelial dysfunction. Hyperglycaemic endothelial cells expressed interferon-response pathway genes such as MX1 and IFI27. Transcription factor analysis implicates the activation of STAT1 and IRF1. Co-treatment of hyperglycaemic cells with metformin prevented glucose-dependent changes in gene expression, including interferon response genes. Indeed, the effects of metformin in endothelial cells were dependent on glucose levels. In normoglycaemic cells, metformin subtly regulated changes in gene expression. In contrast, metformin was strongly associated with the reversal of gene expression changes induced by hyperglycaemia.
Project description:Obesity-induced insulin resistance of the liver is characterised by increased gluconeogenesis, which contributes to elevated blood glucose levels in individuals with type 2 diabetes. Research into how fatty acids induce insulin resistance has commonly focused on the induction of insulin resistance. We hypothesise that by shifting focus to the reversal of an insulin resistant phenotype, novel insights can be made into the mechanisms by which insulin resistance can be overcome. Using global gene and lipid expression profiling, we aimed to identify biological pathways altered in parallel with restoration of palmitate-induced deregulation of glucose production using metformin and sodium salicylate. FAO hepatoma cells were treated with palmitate (0.075mM, 48h) with or without metformin (0.25mM) and sodium salicylate (2mM) in the final 24h of palmitate treatment, and effects on glucose production were determined. Microarray followed by gene set enrichment analysis was performed to investigate pathway regulation. A lipidomic analysis (HPLC-MS/MS) and measurement of secreted bile acids and cholesterol were performed. Reversal of palmitate-induced impairment of glucose production by metformin and sodium salicylate was characterised by down-regulated expression of metabolic pathways regulating acetyl-CoA to cholesterol and bile acid biosynthesis. Total levels of intracellular and secreted cholesterol and bile acids were not different between impaired and restored glucose production. Total intracellular levels of diacylgycerol, triacylglycerol and cholesterol esters increased with palmitate (impaired glucose production), however, these were not further altered with metformin and sodium salicylate (restored glucose production). Six individual lipid species containing 18:0 and 18:1 side-chains were reduced by metformin and sodium salicylate. Widespread lipid metabolism changes induced by the reversal of palmitate-induced deregulation of glucose production with metformin and sodium salicylate were identified. While cholesterol and bile acid levels remained unchanged, the flux through these pathways may in part explain these findings. The identification of lipid species containing 18:0 and 18:1 side chains being regulated alongside changes to glucose production may indicate potential mediators of glucose production and insulin resistance. Three-condition experiment, Vehicle, Palmitate (PA) and Palmitate (PA) + Metformin (Met) + Sodium Sailcylate (NaS) with biological replicates: 8 Vehicle, 20 PA and 20 PA+Met+NaS , independently grown and harvested. One replicate per array.