Project description:We identified genes regulated by parasitization of the silkworm Bombyx mori by three tachinid parasitoid species, Exorista japonica, Drino inconspicuoides and Pales pavida, using oligonucleotide microarrays. The numbers of genes and their intensity of expression varied with the species of parasitoid, within silkworm hemocytes and fat body. Bombyx mori hemocyte, silkgland and fat body samples parasitizated by Exorista japonica, Drino inconspicuoides and Pales pavida were prepared. Gene expression was compared in these two groups: control and parasitized.
Project description:We identified genes regulated by parasitization of the silkworm Bombyx mori by three tachinid parasitoid species, Exorista japonica, Drino inconspicuoides and Pales pavida, using oligonucleotide microarrays. The numbers of genes and their intensity of expression varied with the species of parasitoid, within silkworm hemocytes and fat body.
Project description:We collected a total of 9.8 million mass spectra generated in the laboratory from the proteomics analyses of different silkworm tissues, including the posterior silk gland (PSG) 30, middle silk gland 31, ovary and testis 32, head 33, brain, prothoracic glands, subesophageal ganglion 34, hemolymph 35, fat body 36 and embryo 37,38 of domestic silkworm, and the posterior silk gland of wild silkworm 39.
Project description:We collected a total of 9.8 million mass spectra data generated in the laboratory from the proteomics analyses of different silkworm tissues, including the posterior silk gland (29), middle silk gland (30), ovary and testis (31), head (32), brain, prothoracic glands, subesophageal ganglion (33), hemolymph (34), fat body (35) and embryo (36,37) of domestic silkworm, and the posterior silk gland of wild silkworm (38).
Project description:We collected a total of 9.8 million mass spectra data generated in the laboratory from the proteomics analyses of different silkworm tissues, including the posterior silk gland 29, middle silk gland 30, ovary and testis 31, head 32, brain, prothoracic glands, subesophageal ganglion 33, hemolymph 34, fat body 35 and embryo 36,37 of domestic silkworm, and the posterior silk gland of wild silkworm 38.
Project description:Background: MicroRNAs (miRNAs) repress target genes at the post-transcriptional level, and function in the development and cell-lineage pathways of host species. Tissue-specific expression of miRNAs is highly relevant to their physiological roles in the corresponding tissues. However, to date, few miRNAs have been spatially identified in the silkworm. Results: We establish for the first time the spatial expression patterns of nearly 100 miRNAs in multiple normal tissues (organs) of Bombyx mori females and males using microarray and Northern-blotting analyses. In total, only 10 miRNAs were universally distributed (including bmo-let-7 and bmo-bantam), while the majority were expressed exclusively or preferentially in specific tissue types (e.g. bmo-miR-275 and bmo-miR-1). We additionally examined the developmental patterns of miRNA expression during metamorphosis of the body wall, silk glands, midgut and fat body. In total, 63 miRNAs displayed significant alterations in abundance in at least 1 tissue during the developmental transition from larvae to pupae (e.g. bmo-miR-263b and bmo-miR-124). Expression patterns of five miRNAs were significantly increased during metamorphosis in all four tissues (e.g. bmo-miR-27 and bmo-miR-305). Conclusions: In this study, we conducted preliminary spatial measurements of several miRNAs in the silkworm. Periods of rapid morphological change were associated with alterations in miRNA expression patterns in the body wall, silk glands, midgut and fat body during metamorphosis. Accordingly, we propose that this ubiquitous or tissue-specific expression of miRNAs supports their critical roles in tissue specification. The results obtained should facilitate future functional analyses. To determine the global spatial expression patterns of miRNAs in silkworm, we designed a DNA oligonucleotide-based microarray examining 92 unique miRNAs with 106 antisense probes. To determine the extent of tissue-specific changes during the specific developmental events, we assessed changes in miRNA expression in four individual tissues and organs (body wall, silk glands, midgut and fat body) from the larval to pupal stages.
Project description:In the silkworm, Bombyx mori, juvenile hormone (JH) and 20-hydroxyecdysone (20E) levels are high during the final larval molt (4M) but both absent during the feeding stage of 5th instar (5F), while JH level is low and 20E level is high during the prepupal stage (PP). Fat body is the important organs in insect, we want to find out differentially expressed genes which are respectively regulated by the two hormones. Total RNA from 4th molting,5th feeding and prepupa stages Bombyx fat body were used to generate target cDNA, and then hybridized to 48k Bombyx genome Array Genechips, representing about 23000 characterized genes
Project description:Paralytic peptide (PP) participates in diverse physiological processions as an insect cytokine, such as immunity controls, paralysis induction, regulation of cell morphology and proliferation. To investigate the molecular mechanism underlying those physiological activities, we systematically investigated the global phosphorylation events in fat body of silkworm larvae induced by PP through label-free quantitative phosphoproteomics.