Project description:To examine the miRNA changes that occur during macrophage and dendritic cell differentiation we used the miRCURY LNATM microRNA Array (7th Gen) to profile monocyte-derived macrophages and monocyte-derived dendritic cells. Of the 2046 probes present on the assay, we detected expression of ~400 (20%) miRNAs across all samples.
Project description:Monocytes can give rise to multiple highly specialized cell types to perform a wide array of functions, ranging from pathogen phagocytosis to bone resorption. This differentiation is induced by the binding of cytokines to dedicated receptors on the surface of monocytes, which results in the initiation of genetic programs that enable cells to perform their specialized functions. Given their common background, it is not surprising that monocyte-derived cells share abilities and cellular markers, yet their specialized functions require a dedicated set of proteins. In order to dissect the monocyte differentiation process and to define cell type-specific marker proteins, we differentiated circulating monocytes into dendritic cells, M1 and M2 macrophages, and osteoclasts, and assessed their proteomes by quantitative mass spectrometry throughout the differentiation process. Statistical analysis indicated that monocyte differentiation is a linear process characterized by a common core of proteins that is similarly affected among the distinct differentiation paths. Throughout the specialization process a cluster of RNA-binding and processing proteins was downregulated whereas proteins associated to metabolic processes were increased. Analysis of the specialized cells after 10 days of differentiation uncovered existing and putative novel dendritic cell markers. Combined, we here present a comprehensive proteomic analysis of monocyte differentiation uncovering shared and distinct proteomic features of differentiating monocytes and monocyte-derived cells.
Project description:Expression profiles at different time points during dendritic cell differentiation (induced by specific culture conditions) including monocytes as well as expression profiles between monocytes and completely differentiated cells (macrophages at day7 and dendritic cells at day7, respectively) were compared. Monocyte-derived dendritic cells (DC) were obtained by culturing elutriated monocytes with 20U/ml IL-4, 280U/ml GM-CSF and 10% FCS; monocyte-derived macrophages (MAC) were obtained by culturing elutriated monocytes with 2% AB serum. Three to seven biological replicates that are derived from independent healthy donors were included. One-color based gene expression. 2 datasets: dendritic cell kinetic study and comparison of monocyte, macrophage, and dendritic cells
Project description:miRNA expression profiling of human monocyte-derived dendritic cells (moDCs) during maturation. Immature, 4h and 16h LPS-activated moDCs were used.
Project description:MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in many cellular pathways. MiRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences on mRNAs and induce translational repression or mRNA decay. MiRNA expression can be controlled by transcription factors and can therefore be cell type- or tissue-specific. Here we have analyzed miRNA expression profiles in murine monocyte-derived dendritic cells (DCs) and macrophages upon stimulation with LPS, LDL, eLDL and oxLDL to identify not only stimuli-specific miRNA, but also to identify a hierarchical miRNA system involving miR-155. For this, miR-155 knockout dendritic cells and macrophages were also sequenced using the same stimuli. Sequencing of murine monocyte-derived dendritic cells and macrophages (each wild type and miR-155 knock out cells) matured and stimulated, respectively, by LPS, oxLDL, eLDL or LDL.
Project description:MicroRNAs (miRNAs, miRs) modulate a multitude of cellular events. Here, we identify functional miRNA-protein networks that regulate human monocyte-derived dendritic cell (MDDC) differentiation. MiRNA profiling revealed stage-specific differential expression of 20 miRNAs during days 1, 3 and 5 of MDDC differentiation. To identify and prioritize miRNA-protein networks for functional validation, we developed a target ranking algorithm that incorporates many features of miRNA regulatory networks. This system prioritized miR-21, miR-34a, and their cognate targets WNT1 and JAG1 for functional validation. Inhibition of both miR-21 and miR-34a stalled MDDC differentiation, as quantified by DC-SIGN/CD14 expression ratios, showing cooperative involvement of these miRNAs in MDDC differentiation. We confirmed that the 3’ UTRs of WNT1 and JAG1 were functional targets of these miRNAs and provide evidence that these targets were translationally suppressed. Significantly, exogenously added Wnt-1 and Jagged-1 also stalled MDDC differentiation, suggesting that miRNA mediated inhibition of endogenous WNT1 and JAG1 expression was important for proper MDDC differentiation. Finally, inhibition of miR-21 and miR-34a, or addition of Wnt-1 and Jagged-1 led to a decrease in endocytic capacity, a key function of immature DCs. Thus, our novel approach identified and validated some miRNA-protein networks involved in phenotypic and functional MDDC differentiation.
Project description:MicroRNAs (miRNAs, miRs) modulate a multitude of cellular events. Here, we identify functional miRNA-protein networks that regulate human monocyte-derived dendritic cell (MDDC) differentiation. MiRNA profiling revealed stage-specific differential expression of 20 miRNAs during days 1, 3 and 5 of MDDC differentiation. To identify and prioritize miRNA-protein networks for functional validation, we developed a target ranking algorithm that incorporates many features of miRNA regulatory networks. This system prioritized miR-21, miR-34a, and their cognate targets WNT1 and JAG1 for functional validation. Inhibition of both miR-21 and miR-34a stalled MDDC differentiation, as quantified by DC-SIGN/CD14 expression ratios, showing cooperative involvement of these miRNAs in MDDC differentiation. We confirmed that the 3â UTRs of WNT1 and JAG1 were functional targets of these miRNAs and provide evidence that these targets were translationally suppressed. Significantly, exogenously added Wnt-1 and Jagged-1 also stalled MDDC differentiation, suggesting that miRNA mediated inhibition of endogenous WNT1 and JAG1 expression was important for proper MDDC differentiation. Finally, inhibition of miR-21 and miR-34a, or addition of Wnt-1 and Jagged-1 led to a decrease in endocytic capacity, a key function of immature DCs. Thus, our novel approach identified and validated some miRNA-protein networks involved in phenotypic and functional MDDC differentiation. monocytes were cultured with GM-CSF and IL-4 for the indicated days (0,1, 3, and 5). Each timepoint was repeated in 3 independent donors (donor 1 , 2, and 3).