Project description:Long noncoding RNAs are emerging as critical regulators of biological processes. While there are over 20,000 lncRNAs annotated in the human genome we do not know the function for the majority. Here we performed a high-throughput CRISPRi screen to identify those lncRNAs that are important in viability in human monocytes using the cell line THP1. We identified a total of 35 hits from the screen and validated and characterized two of the top intergenic hits. The first is a lncRNA neighboring the macrophage viability transcription factor IRF8 (RP11-542M13.2 hereafter referred to as long noncoding RNA regulator of monocyte proliferation, LNCRMP) and the second is a lncRNA celled OLMALINC (oligodendrocyte maturation-associated long intervening non-coding RNA) that was previously characterized to be important in oligodendrocyte maturation. Removal of LNCRMP and OLMALINC from monocytes severely limited their proliferation capabilities. RNA-seq analysis of knockdown lines showed that LNCRMP regulated proapoptotic pathways while knockdown of OLMALINC impacted genes associated with the cell cycle. This research highlights the importance of high-throughput screening as a powerful tool for quickly discovering functional long non-coding RNAs (lncRNAs) that play a vital role in regulating monocyte viability.
Project description:Long noncoding RNAs are emerging as critical regulators of biological processes. While there are over 20,000 lncRNAs annotated in the human genome we do not know the function for the majority. Here we performed a high-throughput CRISPRi screen to identify those lncRNAs that are important in viability in human monocytes using the cell line THP1. We identified a total of 35 hits from the screen and validated and characterized two of the top intergenic hits. The first is a lncRNA neighboring the macrophage viability transcription factor IRF8 (RP11-542M13.2 hereafter referred to as long noncoding RNA regulator of monocyte proliferation, LNCRMP) and the second is a lncRNA celled OLMALINC (oligodendrocyte maturation-associated long intervening non-coding RNA) that was previously characterized to be important in oligodendrocyte maturation. Removal of LNCRMP and OLMALINC from monocytes severely limited their proliferation capabilities. RNA-seq analysis of knockdown lines showed that LNCRMP regulated proapoptotic pathways while knockdown of OLMALINC impacted genes associated with the cell cycle. This research highlights the importance of high-throughput screening as a powerful tool for quickly discovering functional long non-coding RNAs (lncRNAs) that play a vital role in regulating monocyte viability.
Project description:Introduction: Glioblastoma (GBM) invasion studies have focused on coding genes, while few studies evaluate long non-coding RNAs (lncRNAs), transcripts without protein-coding potential, for role in GBM invasion. We leveraged CRISPR-interference (CRISPRi) to evaluate invasive function of GBM-associated lncRNAs in an unbiased functional screen, characterizing and exploring the mechanism of identified candidates. Methods: We implemented a CRISPRi lncRNA loss-of-function screen evaluating association of lncRNA knockdown (KD) with invasion capacity in Matrigel. Top screen candidates were validated using CRISPRi and oligonucleotide(ASO)-mediated knockdown in three tumor lines. Clinical relevance of candidates was assessed via The Cancer Genome Atlas(TCGA) and Genotype-Tissue Expression(GTEx) survival analysis. Mediators of lncRNA effect were identified via differential expression analysis following lncRNA KD and assessed for tumor invasion using knockdown and rescue experiments. Results: Forty-eight lncRNAs were significantly associated with 33-83% decrease in invasion (p<0.01) upon knockdown. The top candidate, LINC03045, identified from effect size and p-value, demonstrated 82.7% decrease in tumor cell invasion upon knockdown, while LINC03045 expression was significantly associated with patient survival and tumor grade(p<0.0001). RNAseq analysis of LINC03045 knockdown revealed that WASF3, previously implicated in tumor invasion studies, was highly correlated with lncRNA expression, while WASF3 KD was associated with significant decrease in invasion. Finally, WASF3 overexpression demonstrated rescue of invasive function lost with LINC03045 KD. Conclusion: CRISPRi screening identified LINC03045, a previously unannotated lncRNA, as critical to GBM invasion. Gene expression is significantly associated with tumor grade and survival. RNA-seq and mechanistic studies suggest that this novel lncRNA may regulate invasion via WASF3.
Project description:To delineate cellular pathways underlying cell growth in the absence of sphingolipid syntehsis, we performed a genome-wide CRISPRi screen to identify genetic modifiers of myriocin sensitivity in human K562 cells.
Project description:This dataset examined the epigenetic gene effect on mouse NPCs with Upf2 gene knockout (KO). The sgRNA sequencing results form the epigenetics CRISPRi screen sample are reported.
Project description:we performed lentiviral CRISPR interference (CRISPRi) by recruiting dCas9 fused with the KRAB domain to the CSMD1 enhancer (fam3) in the neuronal precursor cell line – Lund human mesencephalic (LUHMES). Given that the expression of CSMD1 was not detectable in LUHMES cells we differentiated these cells into neurons. Differentiated neurons with CRISPRi of CSMD1 enhancer showed significantly higher expression of CSMD1 than control.