Project description:Development of cereal crops with high nitrogen-use efficiency (NUE) is a priority for worldwide agriculture. In addition to conventional plant breeding and genetic engineering, the use of the plant microbiome offers another approach to improve crop NUE. To gain insight into the bacterial communities associated with sorghum lines that differ in NUE, a field experiment was designed comparing 24 diverse sorghum lines under sufficient and deficient nitrogen (N). Amplicon sequencing and untargeted gas chromatography-mass spectrometry (GC-MS) were used to characterize the bacterial communities and the root metabolome associated with sorghum genotypes varying in sensitivity to low N. We demonstrated that N stress and sorghum type (energy, sweet, and grain sorghum) significantly impacted the root-associated bacterial communities and root metabolite composition of sorghum. We found a positive correlation between sorghum NUE and bacterial richness and diversity in the rhizosphere. The greater alpha diversity in high NUE lines was associated with the decreased abundance of a dominant bacterial taxa, Pseudomonas. Multiple strong correlations were detected between root metabolites and rhizosphere bacterial communities in response to low-N stress. This indicates that the shift in the sorghum microbiome due to low-N is associated with the root metabolites of the host plant. Taken together, our findings suggest that host genetic regulation of root metabolites plays a role in defining the root-associated microbiome of sorghum genotypes differing in NUE and tolerance to low-N stress.
Project description:In this study, we used transcriptomic and hormonomic approaches to examine drought-induced changes in barley roots and leaves and its rhizosphere. By studying hormonal responses, alternative splicing events in barley, and changes in the rhizosphere microbiome, we aimed to provide a comprehensive view of barley drought-adaptive mechanisms and potential plant-microbe interactions under drought stress. This approach improved our understanding of barley adaptive strategies and highlighted the importance of considering plant-microbe interactions in the context of climate change.
Project description:To identify novel microRNAs that are associated with drought tolerance in two different cowpea genotypes, we generated small RNA sequences from adult cowpea plants under control and dought stress treatments. Over 79 million raw reads were generated and numerous novel microRNAs are identified, including some associated with drought tolerance.
Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
Project description:To identify novel microRNAs that are associated with drought tolerance in two different cowpea genotypes, we generated small RNA sequences from adult cowpea plants under control and dought stress treatments. Over 79 million raw reads were generated and numerous novel microRNAs are identified, including some associated with drought tolerance. Sequencing of small RNAs in two cowpea genotypes under control and drought stress conditions.
Project description:To identify novel miRNA and NAT-siRNAs that are associated with abiotic stresses in sorghum, we generated small RNA sequences from sorghum seedlings that grew under control and under dought, salt, and cold stress treatments.