Project description:Purpose: IGH sequencing has revolutionized analysis of structural and functional signatures of B cell clonality. The goals of this study are to compare IGH repertoire of splenic B cells before and after knockdown of long isoform of PRLR. Methods: After amplifying the IGH repertoire of splenic B cells using PCR primers for VHJ558 variable and Cμ constant regions. For next generation sequencing (NGS), a TrueSeq library was prepared by adapter ligation to full-length products and sequenced on the MiSeq Illumina 2x150 bp platform. Results: In this project, Unique nucleotide sequences were identified, their abundances were calculated, and their complementary determining region 3 (CDR3) length, CDR3 spectrum, VDJ usage, and diversity were analyzed using the International Immunogenetics Information System (IMGT) HighV-QUEST software. Controls are included C3,C4,C5,C7,C8 and C9. LFPRLR SMO treated mice samples are: A3,A4,A5,A6,A7 and A8
Project description:We applied high-throughput sequencing of the IGH repertoire in peripheral blood and bone marrow (BM) of a primary immunodeficiency patient. We obtained 325994 IGH sequences from the BM sample and 72597 IGH sequences from the peripheral blood. After comparing with IMGT/GENE-DB database (http://www.imgt.org), we found obviously increased CDR3 clonality in the patient BM as compared to his peripheral blood. Furthermore, the frequency of IgG transcripts in the patient BM was higher than that in the peripheral blood while the frequency of IgM transcripts was similar.
Project description:Developing B lymphocytes undergo V(D)J recombination to assemble germline V, D, and J gene segments into exons that encode the antigen-binding variable region of immunoglobulin (Ig) heavy (H) and light (L) chains. IgH and IgL chains associate to form the B cell receptor (BCR), which upon antigen binding activates B cells to secrete BCR as an antibody. Each of the huge number of clonally independent B cells expresses a unique set of IgH and IgL variable regions. Ability of V(D)J recombination to generate vast primary B cell repertoires results from combinatorial assortment of large numbers of different V, D, and J segments, coupled with diversification of the junctions between them to generate the complementary determining region 3 (CDR3) for antigen contact. Approaches to evaluate in depth the content of primary antibody repertoires and, ultimately, to study how they are further molded by secondary mutation and affinity maturation processes are of great importance to the B cell development, vaccine, and antibody fields. We now describe an unbiased, sensitive, and readily accessible assay, referred to as HTGTS repertoire sequencing (HTGTS-Rep-seq), to quantify antibody repertoires. HTGTS-Rep-seq quantitatively identifies the vast majority of IgH and IgL V(D)J exons, including their unique CDR3 sequences, from progenitor and mature mouse B lineage cells via the use of specific J primers. HTGTS-Rep-seq also accurately quantifies DJH intermediates and V(D)J exons in either productive or non-productive configurations. HTGTS-Rep-seq should be useful for studies of human samples, including clonal B-cell expansions and also for following antibody affinity maturation processes. We employed high-throughput genome-wide translocation sequencing adapted repertoire sequencing (HTGTS-Rep-seq) to study antibody repertoires. For HTGTS-Rep-seq libraries, we utilize bait coding ends of J segments to identify, in unbiased fashion, mouse IgH DJH repertoires [processed tlx files] along with both productive and non-productive IgH V(D)J repertoires from both pro-B and peripheral B cells [processed xls files of samples 1-18, 21-51]. Similarly, we also identify mouse productive and non-productive Igk repertoires from peripheral B cells [processed xls files of samples 19,20,52-57].
Project description:To investigate microRNAs (miRNAs) involving in the regulation of the schistosome development and survival, we compared miRNA expression profiles of adult Schistosoma japonicum derived from yellow cattle and water buffalo using high-throughput sequencing with Illumina Hiseq Xten.
Project description:A diverse antibody repertoire is formed through the rearrangement of V, D, and J segments at the immunoglobulin heavy chain (Igh) loci. The C57BL/6 murine Igh locus has over 100 functional VH gene segments that can recombine to a rearranged DJH. While the non-random usage of VH genes is well documented, it is not clear what elements determine recombination frequency. To answer this question we conducted deep sequencing of 5M-bM-^@M-^Y-RACE products of the Igh repertoire in pro-B cells, amplified in an unbiased manner. ChIP-seq results for several histone modifications and RNA polymerase II binding, RNA-seq for sense and antisense non-coding germline transcripts, and proximity to CTCF and Rad21 sites were compared to the usage of individual V genes. Computational analyses assessed the relative importance of these various accessibility elements. These elements divide the Igh locus into four epigenetically and transcriptionally distinct domains, and our computational analyses reveal different regulatory mechanisms for each region. Proximal V genes are relatively devoid of active histone marks and non-coding RNA in general, but having a CTCF site near their RSS is critical, suggesting that position near the base of the chromatin loops is important for rearrangement. In contrast, distal V genes have high levels of histone marks and non-coding RNA, which may compensate for their poorer RSS and for being distant from CTCF sites. Thus, the Igh locus has evolved a complex system for the regulation of V(D)J rearrangement that is different for of each the four domains that comprise this locus. For the ChIP-seq, input and immunoprecipitated DNA was given to The Scripps DNA Array Facility, where it was prepared for massively parallel sequencing on Illumina HiSeq2000.
Project description:Developing B lymphocytes undergo V(D)J recombination to assemble germline V, D, and J gene segments into exons that encode the antigen-binding variable region of immunoglobulin (Ig) heavy (H) and light (L) chains. IgH and IgL chains associate to form the B cell receptor (BCR), which upon antigen binding activates B cells to secrete BCR as an antibody. Each of the huge number of clonally independent B cells expresses a unique set of IgH and IgL variable regions. Ability of V(D)J recombination to generate vast primary B cell repertoires results from combinatorial assortment of large numbers of different V, D, and J segments, coupled with diversification of the junctions between them to generate the complementary determining region 3 (CDR3) for antigen contact. Approaches to evaluate in depth the content of primary antibody repertoires and, ultimately, to study how they are further molded by secondary mutation and affinity maturation processes are of great importance to the B cell development, vaccine, and antibody fields. We now describe an unbiased, sensitive, and readily accessible assay, referred to as HTGTS repertoire sequencing (HTGTS-Rep-seq), to quantify antibody repertoires. HTGTS-Rep-seq quantitatively identifies the vast majority of IgH and IgL V(D)J exons, including their unique CDR3 sequences, from progenitor and mature mouse B lineage cells via the use of specific J primers. HTGTS-Rep-seq also accurately quantifies DJH intermediates and V(D)J exons in either productive or non-productive configurations. HTGTS-Rep-seq should be useful for studies of human samples, including clonal B-cell expansions and also for following antibody affinity maturation processes.
Project description:Duplicated sequences are the important source of gene innovation and structural variation within mammalian genomes. Using a read depth approach based on next-generation sequencing, we performed a genome-wide analysis of segmental duplications (SDs) and associated copy number variants (CNVs) in water buffalo (Bubalus bubalis). Aligning to the UMD3.1 cattle genome, we estimated 44.6 Mb (~1.73% of cattle genome) segmental duplications in the autosomes and X chromosome using the sequencing reads of Olimpia (the sequenced water buffalo). 70.3% (70/101) duplications were experimentally validated using the fluorescent in situ hybridization. We also detected a total of 1344 CNV regions across 14 additional water buffalos as well as Olimpia, amounting to 59.8Mb of variable sequence or 2.2% of the cattle genome. The CNV regions overlap 1245 genes and are significantly enriched for specific biological functions such as immune response, oxygen transport, sensory system and signalling transduction. Additionally, we performed array Comparative Genomic Hybridization (aCGH) experiments using the 14 water buffalos as test samples and Olimpia as the reference. Using a linear regression model, significant and high Pearson correlations (r = 0.781) were observed between the digital aCGH values and aCGH probe log2 ratios. We further designed Quantitative PCR assays to confirm CNV regions within or near annotated genes and found 74.2% agreement with our CNV predictions.
Project description:The immunoglobulin heavy-chain (Igh) locus undergoes large-scale contraction in pro-B cells, which facilitates VH-DJH recombination by juxtaposing distal VH genes next to the DJH- rearranged gene segment in the proximal Igh domain. By high-resolution mapping of long-range interactions, we now demonstrate that an array of local interaction domains establishes the three- dimensional structure of the extended Igh locus in lymphoid progenitors and thymocytes. In pro- B cells, these local domains engage in long-range interactions across the entire Igh locus, which depend on the transcription factors Pax5, YY1 and CTCF. The large VH gene cluster thereby undergoes flexible long-range interactions with the more rigidly structured 3M-bM-^@M-^Y proximal domain, which ensures that all VH genes can participate with similar probability in VH-DJH recombination to generate a diverse antibody repertoire. Notably, these long-range interactions appear to be an intrinsic feature of the VH gene cluster, as they are still generated upon mutation of the EM-NM-< enhancer, IGCR1 insulator or 3M-bM-^@M-^Y regulatory region present in the 3M-bM-^@M-^Y proximal Igh domain. 4C sequencing from mutliple celltypes with multiple viewpoints; uneven number of replicates ChIP-Seq