Project description:Expression data from airway brush biopsy samples, differentiated primary cultures of human airway epithelia, CaLu3 cultures at the air liquid interface, and primary cultures of human airway epithelia submerged in nutrient media Organotypic cultures of primary human airway epithelial cells have been used to investigate the morphology, ion and fluid transport, innate immunity, transcytosis, infection, inflammation, signaling, cilia and repair functions of this complex tissue. However, we do not know how close these cultures resemble the epithelia in vivo. In this study, we examine the genome-wide expression profile of human airway epithelial cells in vivo obtained from brush biopsies of the trachea and bronchus of healthy volunteers and compare it to the expression profile of primary cultures of human airway epithelia grown at the air-liquid interface. For comparison we also investigate the expression profile of Calu3 cells grown at the air-liquid interface and primary cultures of human airway epithelia submerged in nutrient media.
Project description:Expression data from airway brush biopsy samples, differentiated primary cultures of human airway epithelia, CaLu3 cultures at the air liquid interface, and primary cultures of human airway epithelia submerged in nutrient media Organotypic cultures of primary human airway epithelial cells have been used to investigate the morphology, ion and fluid transport, innate immunity, transcytosis, infection, inflammation, signaling, cilia and repair functions of this complex tissue. However, we do not know how close these cultures resemble the epithelia in vivo. In this study, we examine the genome-wide expression profile of human airway epithelial cells in vivo obtained from brush biopsies of the trachea and bronchus of healthy volunteers and compare it to the expression profile of primary cultures of human airway epithelia grown at the air-liquid interface. For comparison we also investigate the expression profile of Calu3 cells grown at the air-liquid interface and primary cultures of human airway epithelia submerged in nutrient media. We compare the transcriptional profile of human in vivo airway epithelia from trachea and bronchus to differentiated primary human airway epithelia cultures, also from trachea and bronchus, and grown at the air-liquid interface. We also included the profile of Calu3 cultures grown at the air-liquid interface and primary cultures submerged in nutrient media.
Project description:The goal of this study was to examine changes in gene expression over time in healthy human airway epithelia infected with measles virus.
Project description:We report the application of single-cell-based sequencing technology for high-throughput profiling of cell types and and transcriptional state of cells in the complex tissue of the human airway epithelium. Our model system is that of polarized human airway epithelial cultures, differentiated from hTert-immortalized basal-like precursor cells.
Project description:The respiratory epithelium is a polarised layer at the interface between the outside environment and deeper lung structures, overlaid by the epithelial lining fluid (ELF). This provides a mechanical and immunological barrier to inhaled particulates, such as viruses. Human respiratory syncytial virus (hRSV) is a major cause of disease in humans, and targets the respiratory epithelium. However, little is known of the disruption of the ELF proteome in the context of virus-driven respiratory illnesses. To address this, a proteomics approach was combined with an ex-vivo human airway epithelial model (HAE) to investigate the apical and basolateral secretome in hRSV-infected cultures. This demonstrated that several apically- and basolaterally-restricted proteins were subsequently secreted in both directions upon infection, while a number of proteins saw their apical/basolateral abundance ratios significantly altered. Furthermore, another 35 proteins were uniquely identified after hRSV treatment. Importantly, some of these changes were correlated in nasal aspirates (NA) from children with and without hRSV. This study showed that hRSV could affect airway secretions, and disrupted the directionality of the respiratory epithelium.
Project description:Molecular profiling studies in asthma cohorts have identified a Th2-driven asthma subtype, characterized by elevated lower airway expression of POSTN, CLCA1 and SERPINB2. To assess upper airway gene expression as a potential biomarker for lower airway Th2 inflammation, we assayed upper airway (nasal) and lower airway (bronchial) epithelial gene expression, serum total IgE, blood eosinophils and serum periostin in a cohort of 54 allergic asthmatics and 30 matched healthy controls. 23 of 51 asthmatics in our cohort were classified as âTh2 highâ based on lower airway Th2 gene signature expression. Consistent with this classification, âTh2 highâ subjects displayed elevated total IgE and blood eosinophil levels relative to âTh2 lowâ subjects. Upper airway Th2 signature expression was significantly correlated with lower airway Th2 signature expression (r=0.44), with similar strength of association as serum total IgE and blood eosinophils, known biomarkers of Th2 inflammation. In an unbiased genome-wide scan, we identified 8 upper airway genes more strongly correlated with lower airway Th2 gene signature expression (r=0.58), including Eotaxin-3 (CCL26), Galectin-10 (CLC) and Cathepsin-C (CTSC). Asthmatics classified as âTh2 highâ using this 8-gene signature show similar serum total IgE and blood eosinophil levels as âTh2 highâ asthmatics classified using lower airway Th2 gene signature expression. We have identified an 8-gene upper airway signature correlated with lower airway Th2 inflammation, which may be used as a diagnostic biomarker for Th2-driven asthma. Upper airway (nasal) and lower airway (bronchial) epithelial brushings obtained from a cohort of 54 allergic asthmatics and 30 matched healthy controls were profiled by gene expression by microarray. Subjects were assayed for gene expression, serum total IgE, blood eosinophils and serum periostin.