Project description:Embryo implantation is a complex process which involves biochemical and physiological interactions between an implantation-competent blastocyst and a receptive uterus. However, the exact biochemical changes of uterine fluid, uterus, and plasma during peri-implantation remain unclear. This study aims to characterize the biochemical and metabolic changes that occur during the peri-implantation period of early pregnancy, using mice as an animal model. Gas chromatography-mass spectrometry was used to analyze the metabolite profiles of the uterus, uterine fluid, and maternal plasma at pre-implantation and implantation. The multivariate analyses, ANOVA and Tukey's HSD test, were applied to detect significant changes in metabolites and metabolic pathways. The metabolic networks were reconstructed in silico based on the identified metabolites and KEGG metabolic framework. Between pre-implantation day 1 and day 4, dramatic metabolic changes were observed in the uterine fluid that could be important for blastocyst development and protection against the harsh uterine environment. Palmitoleic acid, fumaric acid, and glutaric acid changed levels at day 4 in the uterus, suggesting that they may be associated with endometrial receptivity. Both the uterus and maternal plasma showed profound changes in cellular metabolism at the early implantation period, including upregulation of branched-chain amino acids and intermediates of one-carbon metabolism, an upregulation of glyoxylate and dicarboxylate metabolism, and downregulation of aerobic respiration; all of which could be involved in the regulation of the maternal-fetal interface, alternative nutrient utilization, and energy preservation for implantation as well as later placentation and fetal development to ensure successful embryo implantation.
Project description:In this study, we conducted an integrated analysis of gene expression and chromatin structure of mouse uterus to understand the regulation of uterine expressed genes on gestation day (GD) 4 during the peri-implantation period.
Project description:In this study, we conducted an integrated analysis of gene expression and chromatin structure of mouse uterus to understand the regulation of uterine expressed genes on gestation day (GD) 4 during the peri-implantation period.
Project description:The aim of this study was to examine differential gene expression profile in mouse uterus on day 5 of pregnancy between implantation sites and inter-implantation sites. There are 104,520 tags sequenced and acquired, 51,306 for non-implantation site, and 53,214 for implantation site. Keywords: Implantation, Uterus, Differential gene expression, Implantation sites and inter-implantation sites were isolated from the mouse uteri on day 5 of pregnancy from at least 20 mice. Implantation sites were identified by tail-vein injection of 0.1 ml of 1% Chicago blue 5 min before sample collection. SAGE analysis was used to examine differential gene expression in mouse uterus during embryo implantation.
Project description:In pigs, the peri-implantation period is recognized as determinant of successful reproduction, and it is controlled by neuroendocrinal interactions among signals originating from the female hypothalamic-pituitary-ovarian axis, uterus, and developing embryo. The transcriptomic activity of the pituitary gland may influence reproductive processes occurring in pigs during the peri-implantation period. The aim of this study was to determine alternations in gene expression in the porcine pituitary gland during the peri-implantation period (days 15-16 of pregnancy) in comparison with that during the respective days of the estrous cycle using a microarray approach.
Project description:The role of Gata2 in regulating uterine function including fertility, implantation, decidualization and P4 signaling in the mouse was investigated by the conditional ablation of Gata2 in the uterus using the (PR-cre) mouse and ChIP-seq for in vivo GATA2 binding sites in the murine uterus upon acute P4 administration. Gata2 gene ablation was confirmed by real-time PCR analysis in the PR-cre; Gata2fl/fl (termed Gata2d/d) uterus. While littermate controls are fertile, Gata2d/d females are completely infertile. Analysis of the infertility indicates that implantation does not occur, and the uterine stroma is incapable of undergoing the decidual reaction to support further embryonic development. Measure of P4 target genes including PR itself indicate a block in P4 target gene induction and that Gata2 regulates PR expression directly. Microarray analysis demonstrates that ablation of Gata2 leads to specific gene changes, including disruption of the Wnt signaling pathway, Progesterone receptor (PR) signaling, and Ihh signaling pathway. In addition we identified 46,183 GATA2 binding sites in P4 treatment conditions with 7,954 binding sites overlapping that of the PR.Taken together, these data demonstrate that Gata2 is a critical regulator of gene expression and function in the murine uterus.
Project description:The role of Gata2 in regulating uterine function including fertility, implantation, decidualization and P4 signaling in the mouse was investigated by the conditional ablation of Gata2 in the uterus using the (PR-cre) mouse and ChIP-seq for in vivo GATA2 binding sites in the murine uterus upon acute P4 administration. Gata2 gene ablation was confirmed by real-time PCR analysis in the PR-cre; Gata2fl/fl (termed Gata2d/d) uterus. While littermate controls are fertile, Gata2d/d females are completely infertile. Analysis of the infertility indicates that implantation does not occur, and the uterine stroma is incapable of undergoing the decidual reaction to support further embryonic development. Measure of P4 target genes including PR itself indicate a block in P4 target gene induction and that Gata2 regulates PR expression directly. Microarray analysis demonstrates that ablation of Gata2 leads to specific gene changes, including disruption of the Wnt signaling pathway, Progesterone receptor (PR) signaling, and Ihh signaling pathway. In addition we identified 46,183 GATA2 binding sites in P4 treatment conditions with 7,954 binding sites overlapping that of the PR.Taken together, these data demonstrate that Gata2 is a critical regulator of gene expression and function in the murine uterus.