Project description:Short-read sequencing of DNA fractions of the BioTAP-XL pull-downs on human EZH2 and interacting proteins. ChIP-seq-like pulldown/input samples
Project description:Here we find that ZNF750 activates epidermal differentiation genes and represses progenitor genes as part of two distinct protein complexes Identified genomic binding sites of ZNF750 and its interacting proteins
Project description:Methods for identifying protein-protein interactions have mostly been limited to tagged exogenous expression approaches. We now establish a rapid, robust and comprehensive method for finding interacting proteins using endogenous proteins from limited cell numbers. We apply this approach called ‘Rapid IP-Mass Spectrometry of Endogenous proteins (RIME)’ to identify ER, FoxA1 and E2F4 interacting proteins in breast cancer cells. From small numbers of starting cells, we find a comprehensive collection of known ER, FoxA1 and E2F4 targets, plus a number of novel unexpected interactors. One of the most ER (and FoxA1) associated interactors is GREB1, an estrogen induced gene with almost no known function. We apply RIME, in parallel with ER ChIP-seq, to identify ER protein interactors and ER binding events from solid tumor xenografts, resulting in the validation of the ER-GREB1 interactions. Furthermore, we establish a method for identifying endogenous interacting proteins from solid primary breast cancer samples, whih we apply to validate ER interactions with GREB1 and additional co-factors. Mechanistically, we show that GREB1 is recruited with ER to the chromatin where it functions as an essential estrogen-mediated regulatory factor required for effective ER transcriptional activity. Our novel approach enables, for the first time, the ability for discovery and validation of protein-protein interactions in whole tissue and solid tumors, revealing significant insight into ER regulatory factors. Examination of ERGREB1 and E2F4 genomic binding patterns in cell line and xenograft tumour models
Project description:Molecular glues are small molecules that exert their biologic or therapeutic activities by inducing gain-of-function interactions between pairs of proteins. In particular, molecular-glue degraders, which mediate interactions between target proteins and components of the ubiquitin proteasome system to cause targeted protein degradation, hold great promise as a unique modality for therapeutic targeting of proteins that are currently intractable. Here, we report a new molecular glue HQ461 discovered by high-throughput screening of small molecules that inhibited NRF2 activity. Using unbiased loss-of-function and gain-of-function genetic screening followed by biochemical reconstitution, we show that HQ461 acts by promoting interaction between CDK12 and DDB1-CUL4-RBX1 E3 ubiquitin ligase, leading to polyubiquitination and proteasomal degradation of CDK12’s interacting protein Cyclin K (CCNK). Degradation of CCNK mediated by HQ461 compromised CDK12 function, leading to reduced phosphorylation of CDK12 substrate, downregulation of DNA damage response genes, and cell death. Structure-activity relationship analysis of HQ461 revealed the importance of a 5-methylthiazol-2-amine pharmacophore and resulted in an HQ461 derivate with improved potency. Our studies reveal a new molecular glue that engages its target protein directly with DDB1 to bypass the requirement of a substrate-specific receptor, presenting a new strategy for targeted protein degradation.
2020-07-03 | GSE153707 | GEO
Project description:Screening of marine bacteria for antimicrobial peptides/proteins