Project description:We examined the transcriptional effect of preventing cardiac contraction in zebrafish embryos which can be deprived of circulation without experiencing hypoxia since the fish obtain sufficient oxygen via diffusion. Morpholino antisense knockdown of cardiac troponin T2 (tnnt2) prevented cardiac contraction without affecting vascular development. We concluded that absence of hemodynamic force induces endothelial CXCR4a up-regulation and promotes recovery of blood flow. We used microarrays to define the genetic signatures of the development of collateral vessels in zebrafish. Keywords: Time course comparison of wild type zebrafish embryos and morpholino antisense against troponin t2 treated embryos.
Project description:We examined the transcriptional effect of preventing cardiac contraction in zebrafish embryos which can be deprived of circulation without experiencing hypoxia since the fish obtain sufficient oxygen via diffusion. Morpholino antisense knockdown of cardiac troponin T2 (tnnt2) prevented cardiac contraction without affecting vascular development. We concluded that absence of hemodynamic force induces endothelial CXCR4a up-regulation and promotes recovery of blood flow. We used microarrays to define the genetic signatures of the development of collateral vessels in zebrafish. Experiment Overall Design: One cell zebrafish embryos were injected with morpholino antisense against control or cardiac troponin t2, which prevents cardiac development. Whole embryo RNA was extracted at 36, 48, and 60h post fertilization and transcriptionally profiled.
Project description:In this study, we interrogated the role of DNA methylation in HSPC generation by taking advantage of dnmt1 knockout/knockdown embryos in zebrafish. First, we generated a comprehensive DNA methylation landscape of EHT, which revealed gradually hypermethylated regions associated with vasculogenesis. Taking advantage of dnmt1-deficient embryos, we showed that the decreased DNA methylation blocked HSPC emergence. Mechanistically, we demonstrated that the decreased DNA methylation increased the expression of arterial genes and Notch signaling, thus contributing to defects in the EHT in dnmt1-deficient embryos. Herein, we identified that DNA methylation, as epigenetic regulator, participates in the negative modulation of Notch signaling through inhibiting transcription during HSPC generation in zebrafish.