Project description:ET-743 (trabectedin, Yondelis®) and PM00104 (Zalypsis®) are marine derived compounds that have antitumor activity. ET-743 and PM00104 exposure over sustained periods of treatment will result in the development of drug resistance, but the mechanisms which lead to resistance are not yet understood. Human chondrosarcoma cell lines resistant to ET-743 (CS-1/ER) or PM00104 (CS-1/PR) were established in this study. The CS-1/ER and CS-1/PR exhibited cross resistance to cisplatin and methotrexate but not to doxorubicin. Human Affymetrix Gene Chip arrays were used to examine relative gene expression in these cell lines.
Project description:ET-743 (trabectedin, Yondelis®) and PM00104 (Zalypsis®) are marine derived compounds that have antitumor activity. ET-743 and PM00104 exposure over sustained periods of treatment will result in the development of drug resistance, but the mechanisms which lead to resistance are not yet understood. Human chondrosarcoma cell lines resistant to ET-743 (CS-1/ER) or PM00104 (CS-1/PR) were established in this study. The CS-1/ER and CS-1/PR exhibited cross resistance to cisplatin and methotrexate but not to doxorubicin. Human Affymetrix Gene Chip arrays were used to examine relative gene expression in these cell lines. Experiment Overall Design: Three samples CS-1/ER, CS-1/PR and CS-1 were compared.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Transcriptional profiling and microRNA profiling of paired PDX and derived cell line MT-CHC01 upon ET-743 treatement Intrahepatic cholangiocarcinoma (ICC) is an aggressive and lethal malignancy with limited therapeutic options. ET-743 has a high antitumor activity in preclinical models of biliary tract carcinoma (BTC), being a promising alternative treatment. Here, we studied the effect of ET-743 at transcriptomic level on an ICC patient derived xenograft (PDX) and on the derived cell line, MT-CHC01. Further, putative targets of ET-743 were explored in the in vitro model. In vitro, ET-743 inhibited genes involved in protein modification, neurogenesis, migration, and motility; it induced the expression of genes involved in keratinization, tissues development, and apoptotic processes. In the PDX model, ET-743 affected ECM-receptor interaction, focal adhesion, complement and coagulation cascades, Hedgehog, MAPK, EGFR signaling via PIP3 pathway, and apoptosis. In MT-CHC01, 24 microRNAs were deregulated upon drug treatment. Only 5 microRNAs were perturbed by ET-743 in PDX; 2 up and 3 down-regulated. Among down- regulated genes, we selected SYK and LGALS1; their silencing caused a significantly reduction of migration, but did not affect proliferation in MT-CHC01 and WITT cells. In conclusion, we described that ET-743 affected genes and microRNAs involved in tumor progression and metastatic processes, reflecting data previously obtained at macroscopically level; in particular, we identified SYK and LGALS1 as new putative targets of ET-743.
Project description:Transcriptional profiling and microRNA profiling of paired PDX and derived cell line MT-CHC01 upon ET-743 treatement Intrahepatic cholangiocarcinoma (ICC) is an aggressive and lethal malignancy with limited therapeutic options. ET-743 has a high antitumor activity in preclinical models of biliary tract carcinoma (BTC), being a promising alternative treatment. Here, we studied the effect of ET-743 at transcriptomic level on an ICC patient derived xenograft (PDX) and on the derived cell line, MT-CHC01. Further, putative targets of ET-743 were explored in the in vitro model. In vitro, ET-743 inhibited genes involved in protein modification, neurogenesis, migration, and motility; it induced the expression of genes involved in keratinization, tissues development, and apoptotic processes. In the PDX model, ET-743 affected ECM-receptor interaction, focal adhesion, complement and coagulation cascades, Hedgehog, MAPK, EGFR signaling via PIP3 pathway, and apoptosis. In MT-CHC01, 24 microRNAs were deregulated upon drug treatment. Only 5 microRNAs were perturbed by ET-743 in PDX; 2 up and 3 down-regulated. Among down- regulated genes, we selected SYK and LGALS1; their silencing caused a significantly reduction of migration, but did not affect proliferation in MT-CHC01 and WITT cells. In conclusion, we described that ET-743 affected genes and microRNAs involved in tumor progression and metastatic processes, reflecting data previously obtained at macroscopically level; in particular, we identified SYK and LGALS1 as new putative targets of ET-743.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.