Project description:Neuroendocrine neoplasms are a rare and heterogeneous group of neoplasms. Small sized (≤ 2 cm) pancreatic neuroendocrine tumors (pNETs) are of particular interest, as they are often associated with aggressive behavior, with no specific prognostic or progression markers. This article describes a clinical case characterized by a progressive growth of non-functional pNET requiring surgical treatment, in a patient with a germline FANCD2 mutation, previously not reported in pNETs.
Project description:Fanconi Anemia (FA) is a rare genetic disorder characterized by an increased susceptibility to squamous cell cancers. Fifteen FA genes are known, and the encoded proteins cooperate in a common DNA repair pathway. A critical step is the monoubiquitination of the FANCD2 protein, and cells from most FA patients are deficient in this step. How monoubiquitinated FANCD2 suppresses squamous cell cancers is unknown. Here we show that Fancd2-deficient mice are prone to Ras oncogene-driven skin carcinogenesis, while Usp1-deficient mice, expressing elevated cellular levels of Fancd2-Ub, are resistant to skin tumors. Moreover, Fancd2-Ub activates the transcription of the tumor suppressor TAp63, thereby promoting cellular senescence and blocking skin tumorigenesis. For FA patients, the reduction of FANCD2-Ub and TAp63 protein levels may account for their susceptibility to squamous cell neoplasia. Taken together, Usp1 inhibition may be a useful strategy for upregulating TAp63 and preventing or treating squamous cell cancers in the general non-FA population. Examination of FANCD2 binding after UV treatment in 293T cells
Project description:Glioneuronal tumor (GN) is one type of biphasic central nervous system (CNS) tumor that exhibits both glial and neuronal immunohistological characteristics. We report a case of glioneuronal tumor (GN) with a discovery of novel gene fusion of CLIP2-MET resulting from aberrant chromosome 7 abnormalities. The tumor exhibited typical characteristics on histological examinations. We executed an elaborate genomic study on this case including whole-exome sequencing and RNA sequencing. Genomic analysis of the tumor revealed aberrations in chromosomes 1 and 7 and a CLIP2-MET fusion. Further analysis of the upregulated genes revealed substantial connections with MAPK pathway activation. We concluded that the chromosome 7 abnormalities prompted CLIP2-MET gene fusion which successively leads to MAPK pathway activation. We deliberated that MAPK pathway activation is responsible for the oncogenesis of GN based on our case and other previously reported ones.
Project description:To characterize pancreatic neuroendocrine tumor at protein level, we performed mass spectromery-based proteome analysis using clinical FFPE tissue samples.
Project description:Fanconi Anemia (FA) is a rare genetic disorder characterized by an increased susceptibility to squamous cell cancers. Fifteen FA genes are known, and the encoded proteins cooperate in a common DNA repair pathway. A critical step is the monoubiquitination of the FANCD2 protein, and cells from most FA patients are deficient in this step. How monoubiquitinated FANCD2 suppresses squamous cell cancers is unknown. Here we show that Fancd2-deficient mice are prone to Ras oncogene-driven skin carcinogenesis, while Usp1-deficient mice, expressing elevated cellular levels of Fancd2-Ub, are resistant to skin tumors. Moreover, Fancd2-Ub activates the transcription of the tumor suppressor TAp63, thereby promoting cellular senescence and blocking skin tumorigenesis. For FA patients, the reduction of FANCD2-Ub and TAp63 protein levels may account for their susceptibility to squamous cell neoplasia. Taken together, Usp1 inhibition may be a useful strategy for upregulating TAp63 and preventing or treating squamous cell cancers in the general non-FA population.