Project description:The maize smut fungus, Sporisorium reilianum f. sp. zeae, which is an important biotrophic pathogen responsible for extensive crop losses, infects maize by invading the root during the early seedling stage. In order to investigate disease-resistance mechanisms at this early seedling stage, digital gene expression (DGE) analysis, which applies a dual-enzyme approach (DpnII and NlaIII), was used to identify the transcriptional changes in roots of Huangzao4 (susceptible) and Mo17 (resistant) after inoculation with teliospores of S. reilianum. Before and after inoculation, pathogenesis-related genes were differentially regulated and enzymes involved in controlling reactive oxygen species (ROS) levels showed different activity between Huangzao4 and Mo17, which can potentially lead to changes in the growth of S. reilianum and ROS production in maize. Moreover, lignin depositions of roots were also changed differentially during root colonization of hyphae between Huangzao4 and Mo17. These results suggest that the interplays between S. reilianum and maize during the early infection stage involve many interesting transcriptional and physiological changes, which offer several novel insights for understanding the mechanisms of resistance to the fungal infection.
2012-12-03 | GSE40952 | GEO
Project description:Microbial Potential of Spent Mushroom Compost and Oyster Substrate in Horticulture
Project description:Two mushrooms' species, Hericium and Pleurotus were grown on a mushroom substrate mixed with different precentage of olive mill solid waste (OMSW).
Mushroom fruit body (FB), spent mushroom substrate (SMS) and mushroom substrate alone without mushroom mycelium (MS) were extracted by methanol and injected to LC-MS/MS (Experimental details included in the methods and protocol's part). computational metabolomic tools have been used to study the effect of the OMSW on the diversity of the mushrooms specialized metabolism.
Project description:The exxpression profilling of chilling responsive and growth regulated microRNAs of maize hybrid ADA313 was conducted. Maize seedling were subjected to chilling temperature then meristem, elongation and mature growth zones were sampled. 321 known maize microRNA expression level were determined and compared between meristem, elongation and mature zones. Determining and validating of chilling responsive microRNAs associated with leaf growth of hybrid maize (Zea mays L.) ADA313
2021-02-01 | GSE127219 | GEO
Project description:Analysis of forest soil microbial community after treatment of spent mushroom substrate
Project description:The maize smut fungus, Sporisorium reilianum f. sp. zeae, which is an important biotrophic pathogen responsible for extensive crop losses, infects maize by invading the root during the early seedling stage. In order to investigate disease-resistance mechanisms at this early seedling stage, digital gene expression (DGE) analysis, which applies a dual-enzyme approach (DpnII and NlaIII), was used to identify the transcriptional changes in roots of Huangzao4 (susceptible) and Mo17 (resistant) after inoculation with teliospores of S. reilianum. Before and after inoculation, pathogenesis-related genes were differentially regulated and enzymes involved in controlling reactive oxygen species (ROS) levels showed different activity between Huangzao4 and Mo17, which can potentially lead to changes in the growth of S. reilianum and ROS production in maize. Moreover, lignin depositions of roots were also changed differentially during root colonization of hyphae between Huangzao4 and Mo17. These results suggest that the interplays between S. reilianum and maize during the early infection stage involve many interesting transcriptional and physiological changes, which offer several novel insights for understanding the mechanisms of resistance to the fungal infection. Examination of control stage (ck), post-inoculation stage1 (P1) and post-inoculation stage2 (P2) in Huangzao4 (susceptible) and Mo17 (resistant)
Project description:Two mushrooms' species, Hericium and Pleurotus were grown on a mushroom substrate mixed with different percentage of olive mill solid waste (OMSW). Mushroom fruit body (FB) spent mushroom substrate (SMS) and mushroom substrate alone without mushroom mycelium (MS) were extracted by methanol and injected to LC-MS/MS, using electro spray ionization (ESI) in a negative ion mode. (Experimental details included in the methods and protocol's part). computational metabolomic tools have been used to study the effect of the OMSW on the diversity of the mushrooms specialized metabolism.
Project description:Two mushrooms' species, Hericium and Pleurotus were grown on a mushroom substrate mixed with different percentage of olive mill solid waste (OMSW).
Mushroom fruit body (FB) spent mushroom substrate (SMS) and mushroom substrate alone without mushroom mycelium (MS) were extracted by methanol and injected to LC-MS/MS, using electro spray ionization (ESI) in a positive ion mode. (Experimental details included in the methods and protocol's part). computational metabolomic tools have been used to study the effect of the OMSW on the diversity of the mushrooms specialized metabolism.