Project description:Origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L), on the rumen bacterial community composition was further examined using the recently developed RumenBactArray.
Project description:A healthy rumen is crucial for normal growth and improved production performance of ruminant animals. Rumen microbes participate in and regulate rumen epithelial function, and the diverse metabolites produced by rumen microbes are important participants in rumen microbe-host interactions. SCFAs, as metabolites of rumen microbes, have been widely studied, and propionate and butyrate have been proven to promote rumen epithelial cell proliferation. Succinate, as an intermediate metabolite in the citric acid cycle, is a final product in the metabolism of certain rumen microbes, and is also an intermediate product in the microbial synthesis pathway of propionate. However, its effect on rumen microbes and rumen epithelial function has not been studied. It is unclear whether succinate can stimulate rumen epithelial development. Therefore, in this experiment, Chinese Tan sheep were used as experimental animals to conduct a comprehensive analysis of the rumen microbiota community structure and rumen epithelial transcriptome, to explore the role of adding succinate to the diet in the interaction between the rumen microbiota and host.
Project description:SARST-V1 method was used to asses the effect of live yeast on the microbial population of the rumen of cows fed an acidogenic diet 3 cows were used in 3 by 3 latin-square design with 3 periods. In each period animals received either 0.5g/d of yeast, 5g/d of yeast or none. Rumen microbiota was analysed using the SARST-V1 method for each period.
Project description:In order to investigate the diurnal oscillations of ruminal protozoa, and their responses to the changes in different feeding patterns, we conducted an animal experiment by feeding the sheep ad libitum with a hay-based diet (50% of alfalfa hay and 46% of oats hay) and a grain-based diet (45% of corn meal and 11% of soybean meal) for 30 days, and ruminal fluid samples were collected at six different timepoints from T2 to T22 in one day, and the composition and diversity of the protozoal communities in rumen microbiomes of the sheep in the Grain-diet and Hay-diet groups at different timepoints were analyzed through 18S rRNA sequencing.
Project description:<p>From an animal production and health perspective, our understanding of the metabolites in ruminant biofluids, particularly rumen fluid across different host species is poorly understood. Metabolomics is a powerful and sensitive approach for investigating low molecular weight metabolite profiles present in rumen biofluids. It can be used to identify potential roles of metabolites in the rumen microbiome and provide and understanding of host-level regulatory mechanisms associated with animal production. The rumen is a strictly anaerobic environment enriched with a complex community of bacteria, protozoa, fungi, archaea and bacteriophages. Here, we present a metabolomic dataset generated using hydrophilic interaction liquid chromatography (HILIC) and semi-polar (C18) chromatography methods coupled to high resolution mass spectrometry (MS), collected in both positive and negative ionization modes, of ovine rumen samples that were fractionated based on molecular weight (20 kDa, 8-10 kDa and 100 Da). This study highlights the potential of HILIC and C18 chromatography combined with non-targeted mass spectrometric methods to detect the polar and semi-polar metabolite species of the ruminal fluid metabolome.</p>
Project description:Raw LC-MSMS data from the Plos One publication: "Novel Reusable Animal Model for Comparative Evaluation of In vivo Growth and Protein-Expression of Escherichia coli O157 strains in the Bovine Rumen" Represents 2 LC-MSMS runs L (lactation diet) and M (maintenance diet) in 10 fractions each. Each run contains 6 iTRAQ labeled samples, 3 strains grown in both the in-vivo and in-vitro rumen fluid.