Project description:Functionally distinct CD4+ helper T (Th) cell subsets, such as Th1, Th2, Th17, and regulatory T cells (Treg), play a pivotal role in the host-defense against pathogen invasion and the pathogenesis of inflammatory disorders. In this project, DIA-MS-based proteome analysis was performed on naïve CD4+ T, Th0, Th1, Th2, Th17 and iTreg cells using Q Exactive HF-X (Thermo Fisher Scientific) to search for proteins that differ among the cell subsets.
Project description:The genetic changes underlying metastatic melanoma need to be deciphered to develop new and effective therapeutics. Previously, genome-wide microarray analyses of human melanoma identified two reciprocal gene expression programs, that included expression of mRNAs regulated by either transforming growth factor, beta 1 (TGFB1) pathways or microphthalmia-associated transcription factor (MITF)/SRY-box containing gene 10 (SOX10) pathways. We extend this knowledge to include gene expression analyses of 5 additional human melanoma lines, and show that these lines also fall into either TGFB1 or MITF/SOX10 gene expression groups. These mRNA expression studies were followed up by miRNA expression analyses. Microarray analyses were performed on 5 metastatic melanoma lines in 3 replicates. Standard Affymetrix protocols were used.
Project description:Type 1 regulatory T (Tr1) cells are one of the regulatory T cell subsets that are characterized by the production of high amount of IL-10 and lack of FOXP3 expression. Lymphocyte-activation gene 3 (LAG3) is a CD4 homologue molecule and we have previously reported that LAG3 is expressed on IL-10 producing regulatory T cells. However, naturally occurring Tr1 cells in human secondary lymphoid tissue have not been detected. We identified CD4+CD25-LAG3+ T cells in human tonsil. We compared mRNA expression of five CD4+ T cell subsets in tonsil using microarray analysis (CD4+CD25-LAG3+ T cells, CD4+CD25-CXCR5+PD-1+ follicular helper T cells (TFH), CD4+CD25+ T cells, CD4+CD25-LAG3-CD45RO+ cells and CD4+CD25-LAG3-CD45RO- cells). A human tonsil was obtained from a patient undergoing routine tonsillectomy, and five tonsillar CD4+ T cell subsets were sorted (each 1 x 10^5 cells). There is no biological replication.
Project description:We sought to identify genes and gene signatures which correlate with progression by sampling human melanomas from nevi, primary, and metastatic tumors. The large number of samples also permits analysis within groups. Human melanoma samples were isolated from historical frozen patient specimens. RNA was extracted and run on the human Affymetrix U133A microarray chip.
Project description:Type 1 regulatory T (Tr1) cells are one of the regulatory T cell subsets that are characterized by the production of high amount of IL-10 and lack of FOXP3 expression. Lymphocyte-activation gene 3 (LAG3) is a CD4 homologue molecule and we have previously reported that LAG3 is expressed on IL-10 producing regulatory T cells. However, naturally occurring Tr1 cells in human secondary lymphoid tissue have not been detected. We identified CD4+CD25-LAG3+ T cells in human tonsil. We compared mRNA expression of five CD4+ T cell subsets in tonsil using microarray analysis (CD4+CD25-LAG3+ T cells, CD4+CD25-CXCR5+PD-1+ follicular helper T cells (TFH), CD4+CD25+ T cells, CD4+CD25-LAG3-CD45RO+ cells and CD4+CD25-LAG3-CD45RO- cells).
Project description:To discover potential biomarkers of melanoma development and progression, we embarked on studies comparing the glycomic gene profiles of normal human epidermal melanocytes with human metastatic melanoma (MM) cells represented by A375 and G361 cell lines. Glycomic features embody all of those enzymatic, membranous and regulatory proteins that influence glycan ‘sugar’ formation/degradation on a cell. Comparative expression profiling of glycomic genes indicated that several genes were differentially expressed between normal melanocytes and MM cells. We speculate that glycome genes differentially expressed in MM cells help drive malignant and metastatic behavior of MM cells and could potentially serve as a biomarker(s) of melanoma progression.
Project description:Differentiation of CD4+T-cells into effector subsets is a critical component of the adaptive immune system and an incorrect response can lead to autoimmunity or immune deficiency. Cellular differentiation including T-cell differentiation is accompanied by large-scale epigenetic remodeling, including changes in DNA methylation at key regulators of T-cell differentiation. The TET family of enzymes were recently shown to be able to catalyse methylated cytosine (5mC) into 5-hydroxymethylcytosine (5hmC) enabling a pathway of active removal of DNA methylation. Here, we characterize 5hmC, 5mC and transcriptional dynamics during human CD4+T-cell polarisation in a time series approach and relate these changes to profiles in ex-vivo CD4+memory subsets. We observed large-scale remodelling during early CD4+T-cell differentiation which was predictive of subsequent changes during late time points, these changes were also related to disease associated regions which we show can act as functional regulatory elements. This dataset was designed to assess how DNA methylation differs between in-vivo derived CD4+memory T-cell subsets. DNA methylation was assessed in relationship to gene expression levels and changes (see data series), we observed anticorrelation between promoter DNA methylation levels and gene expression. This submission contains data from DNA methylation profiling of primary human CD4+T-cell memory subsets. This is part of a series, containing transcription and DNA methylation profiling of the same samples. See related experiments E-MTAB-4685, E-MTAB-4686, E-MTAB-4687, E-MTAB-4688