Project description:To determine the optimal RNA-Seq approach for animal host-bacterial symbiont analysis, we compared transcriptome bias, depth and coverage achieved by two different mRNA capture and sequencing strategies applied to the marine demosponge Amphimedon queenslandica holobiont, for which genomes of the animal host and three most abundant bacterial symbionts are available.
Project description:Host-microbe interactions are virtually bidirectional, benefiting both the host and microbial sides. It is becoming increasingly recognized the influence of the microbe on many aspects of host physiology and diseases, but whether/how the host affects their symbionts is poorly characterized. Here, we reported that the host acts as a critical factor to shape the lifestyle of their symbionts in the Drosophila and bacteria model system. First, we observe that Drosophila larvae play a pivotal role in competing with pathogenic symbionts in the co-existing niche. More specifically, host larvae antagonize symbionts by deconstructing the surface slick, preventing outgrowth and antagonizing the pathogenicity of S. marcescens. Furthermore, Drosophila larvae cause the shift in the transcriptomic profile of S. marcescens, characterized with the upregulated expression of genes related to bacterial proliferation and growth and the downregulated expression of genes related to bacterial pathogenicity. More importantly, advances in bacterial single-cell RNA sequencing provide opportunities to reveal transcriptional variation, including toxic factors, across individual cells and a subpopulation clustering of isogenic bacterial populations. Finally, we found that AMPs from larvae recapitulated the response of S. marcescens to the presence of Drosophila larvae. Altogether, these findings provide an insight into the pivotal roles of the host in influencing the potential pathogens' lifecycle switching from commensalism to pathogenicity, opening the door to a better understanding of the ecological relationships between the host and microbe.
Project description:Host-microbe interactions are virtually bidirectional, benefiting both the host and microbial sides. It is becoming increasingly recognized the influence of the microbe on many aspects of host physiology and diseases, but whether/how the host affects their symbionts is poorly characterized. Here, we reported that the host acts as a critical factor to shape the lifestyle of their symbionts in the Drosophila and bacteria model system. First, we observe that Drosophila larvae play a pivotal role in competing with pathogenic symbionts in the co-existing niche. More specifically, host larvae antagonize symbionts by deconstructing the surface slick, preventing outgrowth and antagonizing the pathogenicity of S. marcescens. Furthermore, Drosophila larvae cause the shift in the transcriptomic profile of S. marcescens, characterized with the upregulated expression of genes related to bacterial proliferation and growth and the downregulated expression of genes related to bacterial pathogenicity. More importantly, advances in bacterial single-cell RNA sequencing provide opportunities to reveal transcriptional variation, including toxic factors, across individual cells and a subpopulation clustering of isogenic bacterial populations. Finally, we found that AMPs from larvae recapitulated the response of S. marcescens to the presence of Drosophila larvae. Altogether, these findings provide an insight into the pivotal roles of the host in influencing the potential pathogens' lifecycle switching from commensalism to pathogenicity, opening the door to a better understanding of the ecological relationships between the host and microbe.
Project description:Parasites of the genus Perkinsus spp. cause high mortalities and economic losses to the most noticeable bivalves produced in the worldwide aquaculture. In this study, we analyze how P. olseni influences the gene expression profiles of hemocytes from Manila clam (Venerupis philippinarum) using experimental infections along a temporal series and a Manila clam immune-enriched DNA microarray.
Project description:The mammalian gastrointestinal tract harbors thousands of bacterial species that include symbionts as well as potential pathogens. The immune responses that limit access of these bacteria to underlying tissue remain poorly defined. In this study, we used microarrays to uncover the transcriptional responses that occur in small intestinal γδ intraepithelial lymphocytes following bacterial challenge.
Project description:The goal of this study was to use heterologous microarray hybridization to determine genomic content shared among different vesicomyid symbionts. These symbionts are closely related and can be thought of as different strains of bacteria, facilitating the use of heterologous microarray hybridization to determine genomic content. Keywords: comparative genomic hybridization Microarrays were built off the Ruthia magnifica genome and two replicate hybridizations to this organism were used as a baseline for comparisons. Genomic DNA from two other vesicomyid symbionts (Calyptogena kilmeri and C. pacifica symbionts) was also hybridized to the array with three biological replicates for each sample.