Project description:The goal of this study was to use heterologous microarray hybridization to determine genomic content shared among different vesicomyid symbionts. These symbionts are closely related and can be thought of as different strains of bacteria, facilitating the use of heterologous microarray hybridization to determine genomic content. Keywords: comparative genomic hybridization
Project description:The goal of this study was to use heterologous microarray hybridization to determine genomic content shared among different vesicomyid symbionts. These symbionts are closely related and can be thought of as different strains of bacteria, facilitating the use of heterologous microarray hybridization to determine genomic content. Keywords: comparative genomic hybridization Microarrays were built off the Ruthia magnifica genome and two replicate hybridizations to this organism were used as a baseline for comparisons. Genomic DNA from two other vesicomyid symbionts (Calyptogena kilmeri and C. pacifica symbionts) was also hybridized to the array with three biological replicates for each sample.
Project description:Biological carbon fixation is foundational to the biosphere. Most autotrophs are thought to possess one carbon fixation pathway. The hydrothermal vent tubeworm Riftia pachyptila’s chemoautotrophic symbionts, however, possess two functional pathways: the Calvin Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. Little is known about how Riftia’s symbionts and related organisms coordinate the functioning of these two pathways. Here we investigated net carbon fixation rates, transcriptional/metabolic responses, and transcriptional co-expression patterns of Riftia pachyptila’s endosymbionts by incubating tubeworms at environmental pressures, temperature, and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes, suggesting distinctive yet complementary roles in metabolic function. Net carbon fixation rates were also exemplary, and accordingly we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.
Project description:Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.