Project description:Bio-electrospray, the direct jet-based cell handling apporach, is able to handle a wide range of cells. Studies at the genomic, genetic, and the physiological level have shown that, post-treatment, cellular integrity is unperturbed and a high percentage (>70%, compared to control) of cells remain viable. Although, these results are impressive, it may be argued that cell based systems are oversimplistic. This study utilizing a well characterised multicellular model organism, the non-parasitic nematode Caenorhabditis elegans. Nematodes were subjected to bio-electrosprays to demonstrate that bio-electrosprays can be safely applied to nematodes.
Project description:The nematode Caenorhabditis elegans has evolutionarily conserved EV signaling pathways. In this study, we apply a recently published method for high specificity purification of EVs from C. elegans to carry out target-independent proteomic and RNA analysis of EVs from C. elegans. Our experiments uncovered diverse coding and non-coding RNA transcripts as well as protein cargo types commonly found in human EVs.
Project description:we used Caenorhabditis elegans as a model organism, to investigate the effect of mannose on the lifespan. Using nematode RNAi methods, RT-PCR, RNA-seq and other experimental method, we explored the possible mechanism for how mannose change the lifespan of Caenorhabditis elegans.
Project description:The goal of this study was to elucidate genes that are employed by the bacterivorous nematode Caenorhabditis elegans to respond to the emerging nosocomial bacterial pathogen Stenotrophomonas maltophilia.
Project description:Folate receptors transport folates into the cell via an endocytic mechanism. FOLR-1 is the sole ortholog of folate receptors in the nematode Caenorhabditis elegans. In this study, we examined how loss of FOLR-1 affects gene expression.
Project description:This project aims to identify novel RNA binding proteins in the nematode, Caenorhabditis elegans. Since interactions between RNAs and proteins may be transient, these animals were crosslinked with UV light at 254 nm which promotes the covalent link between proteins and RNAs. After this, polyadenylated mRNAs were purified via oligo(dT) coupled to magentic beads under stringent conditions. Finally, samples were subjected to mass spectrometry analysis. To rule out the possibility of RNA-independent binding we also analysed other samples: i) samples digested with RNase one; ii) samples where we performed competition assays with polyadenylic acid
Project description:Comprehensive list of SUMO targets from the nematode Caenorhabditis elegans. SUMO conjugates isolated from transgenic worms carrying 8His and GFP tagged SUMO. The constructs rescues the lethal knock-out of a single SUMO gene, smo-1. SUMO conjugates where isolated from heat shock, arsenite exposure, and UV treated SUMO-GFP worms as well as from control non treated animals. In parallel identical purification procedure was performed with non-transgenic worms and proteins identified with this control where excluded.
Project description:In order to evaluate the identification of genes and pathways, the global gene expression profiles were assessed in response to multiwall carbon nanotube (MWCNT) on the soil nematode, Caenorhabditis elegans. We performed whole genome DNA microarray experiments with subsequent quantitative analysis conducted on selected genes.