Project description:Periosteal expansion is a key process in the early stages of bone fracture repair. The periosteum is typically quiescent, but upon fracture it expands, periosteal cells proliferate and contribute to the formation of a cartilaginous callus . The early expansion of the periosteum is tightly regulated at the transcriptional level. However, the molecular mechanisms behind periosteal expansion are unknown. Here, we show that Yes-Associated Protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) mediate periosteal expansion and periosteal cell proliferation. Bone fracture results in increased numbers of YAP-expressing periosteal cells. Deletion of YAP from Osterix (Osx) expressing periosteal cells impairs early periosteal expansion. Mechanistically, YAP regulates both cell intrinsic and extrinsic transcriptional programs that allow for periosteal expansion. Specifically, we identified Bmp4 as a cell extrinsic factor regulated by YAP, that rescues the impairment of periosteal expansion upon YAP deletion. Together, these data establish YAP mediated molecular mechanisms that allow for periosteal expansion in the early stages of fracture repair.
Project description:Bone regeneration is a highly efficient process allowing scarless healing after injury. The periosteum, the outer layer of bones, is a critical source of skeletal stem/progenitor cells (SSPCs), as well as immune, endothelial and neural cells during bone repair. In our study, we generated a single-nuclei atlas of the murine periosteal response to bone fracture. We generated single nuclei datasets from uninjured periosteum and from injured periosteum and hematoma/fracture callus at days 5 and 7 post-injury from wild-type mice.
Project description:To further understand the molecular complexity of fracture repair, we investigated miRNA profiling during the first 14 days post fracture. miRNA expression was investigated at post-fracture days 1, 3, 5, 7, 11, 14 as well as in intact (unfractured bone).
Project description:The phases of fracture healing have been well characterized. However, the exact source and genetic profile of the skeletal progenitors that participate in bone repair is somewhat unclear. Sox9 expression in skeletal elements precedes bone and cartilage formation and a Sox9+ cell type is retained in the adult periosteum. We hypothesized that Sox9+ periosteal cells are multipotent skeletal progenitors normally participating in fracture repair. To test this hypothesis we used tamoxifen (TM)-mediated lineage tracing of Sox9+ cells in Sox9CreErt2:Td-Tomato mice. TM injection indelibly labels Sox9+ cells and all their descendants with the fluorescent reporter protein Td-Tomato. Intact mouse femora were harvested 2 weeks after TM injection and analyzed by histology and immunostaining and RNA sequencing, to evaluate the skeletal distribution and gene expression profile of Td-Tomato positive cells in the adult femur. To assess the role of these cells in fracture repair, mice underwent a closed mid-diaphyseal femoral fracture and their hind limbs were harvested at 3, 9 or 56 days post-fracture to assess the contribution of Sox9+ and Td-tomato+ cells in the fracture healing process. In the intact adult mouse femur, Td-Tomato-labelled cells were observed in articular and growth plate cartilage where Sox9 is known to be expressed, but also in the primary spongiosa, periosteum, and endosteum. RNA sequencing and subsequent analysis showed that Td-Tomato positive periosteal cells were enriched in Sox9 transcripts, and transcripts for various osteogenic and chondrocyte specific genes. In a femoral fracture model, we showed that pre-labeled Td-Tomato positive descendent cells were mobilized during the fracture repair process, expanding and migrating towards the fracture site 3 days post-fracture. Here, Td-Tomato positive cells differentiate into chondrocytes and osteoblasts in the soft and hard callus, respectively, 9 days post-fracture. By 2 months post-fracture, descendants of the original Sox9 labelled cell population were prevalent in the cortex and periosteum, and amongst the differentiated osteocyte population embedded within the cortical bone. Thus, a Sox9+ progenitor population resides in the adult periosteum. Fate tracing shows that these cells likely play a substantial role in repair of the fractured femur giving rise to chondrocytes, osteoblasts and mature cortical osteocytes. To our knowledge this is the first report of this Sox9+ cell population in the periosteum of the adult long bone. Taken together with developmental studies on skeletal formation, our data suggest that Sox9+ osteochondroprogenitors play a continuous role in skeletal formation throughout life.
Project description:To further understand the molecular complexity of fracture repair, we investigated miRNA profiling during the first 14 days post fracture.
Project description:The periosteum contains cells which function as a reservoir of stem cells and progenitors and contribute to cortical expansion during growth, cortical bone homeostasis and repair. However, the local or paracrine factors that govern stem cell renewal and differentiation within the periosteal niche remains elusive. Cathepsin K (Ctsk) together with additional cell surface markers marks a subset of stem cells in the periosteum (PSC) which possess self-renewal ability and inducible multipotency. These PSCs produce osteoblasts mediating periosteal bone formation and fracture repair. Sfrp4 is expressed in periosteal Ctsk-lineage cells and using CtskCre mice that are either wild type or Sfrp4-/-, we report here that Sfrp4 deletion decreases the pool of PSCs, impairs their self-renewal, their ability to give rise to their derivatives and their clonal multipotency for differentiation into osteoblasts and chondrocytes in vitro and formation of bone organoids in vivo. Bulk RNA sequencing analysis in Ctsk-lineage PSCs demonstrated that Sfrp4 deletion leads to downregulation of signaling pathways associated with skeletal development, positive regulation of bone mineralization and wound healing. Sfrp4 deletion hampers the Ctsk-lineage PSC response and recruitment after bone injury and leads to an impaired periosteal response. Periosteal Ctsk-lineage cells respond to PTH(1-34) treatment with an increase in the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, bone histomorphometry analysis showed that in the absence of Sfrp4, PTH(1-34)-dependent increase in cortical thickness, periosteal bone formation is markedly impaired.
Project description:Fracture healing is a process that involves many cell populations. In this study we characterized gene expression in a subset of cells involved in fracture healing. αSMACreERT2 mice crossed with Ai9 reporter mice that express tdTomato fluorescent protein after Cre-mediated activation were used as an experimental model. αSMA-expressing cells were labeled by tamoxifen administration, then periosteal cells from the tibia were isolated two days later (controls), or tibial fractures were performed and periosteum/soft callus tissue was collected after 2 and 6 days. The tdTomato positive cell population was isolated by flow cytometry, and subjected to microarray analysis. Histology and cell surface marker analysis indicates that αSMACreERT2 labels a mainly mesenchymal population in the periosteum that expands after fracture, and contributes to both osteogenic and chondrogenic elements of the fracture callus. We were therefore able to examine gene expression in a defined population during the early stages of fracture healing. Total RNA was obtained from the tomato positive cells within the periosteal compartment of fractures from αSMACreERT2/Ai9 mice. Control animals were given 2 doses of tamoxifen, and periosteum was collected and labeled cells sorted (8-9 sex-matched mice per group). Fractures were performed after the second dose of tamoxifen, and tomato positive cells from periosteum/callus tissue were isolated 2 and 6 days after fracture (4-8 animals per sample pooled). 3 replicates for each sample are included.