Project description:Purpose: The recent publication of the fungal mutualist R. irregularis genome facilitated transcriptomic studies. We here adress the gene regulation of R. irregularis in response to root exudates from rice wild-type and osnope1 (no perception candidate - mutant unable to host arbuscular mycorrhizal fungi) Methods: Spores of R. irregularis were treated with root exudates and collected at 1 hour, 24 hours and 7 days after addition. To monitor fungal gene regulation, control conditions were also prepared at T0, 1h, 24h and 7d. mRNA were sequenced by HiSeq Illumina. Reads were mapped on the Rhizophagus irregularis genome assembly (Gloin1 - Tisserant et al., PNAS, 2013) using CLCworkbench suite. Results: -At 1h, a set of 92 fungal genes were found up-regulated in response to wt root exudates (92), not to osnope1 root exudates, many of them being involved in cell signaling. -At 24h and 7d, numerous genes putatively involved in primary metabolism were up-regulated in response to wt root exudates, not in response to osnope1 root exudates -Several vital genes involved in cell development are repressed in response to osnope1 RE compared to wt RE. Conclusions: these results argue for a high metabolic activity induced by wt root exudates, not by osnope1 root exudates.
Project description:<p>Drought stress negatively impacts microbial activity, but the magnitude of stress responses are likely dependent on a diversity of below ground interactions. Populus trichocarpa individuals and no plant bulk soils were exposed to extended drought (~0.03% gravimetric water content (GWC) after 12d), re-wet, and a 12-d 'recovery' period to determine the effects of plant presence in mediating soil microbiome stability to water stress. Plant metabolomic analyses indicated that drought exposure increased host investment in C and N metabolic pathways (amino acids, fatty-acids, phenolic glycosides) regardless of recovery. Several metabolites positively correlated with root-associated microbial alpha diversity, but not those of soil communities. Soil bacterial community composition shifted with P. trichocarpa presence and with drought relative to irrigated controls, whereas soil fungal composition only shifted with plant presence. However, root fungal communities strongly shifted with drought, whereas root bacterial communities changed to a lesser degree. The proportion of bacterial water-stress opportunistic OTUs (enriched counts in drought) were high (~11%) at the end of drying phases, and maintained after re-wet, and recovery phases in bulk soils, but declined over time in soils with plants present. For root fungi opportunistic OTUs were high at the end of recovery in drought treatments (~17% abundance), although relatively not responsive in soils, particularly planted soils (< 0.5% abundance for sensitive or opportunistic). These data indicate that plants modulate soil and root associated microbial drought responses via tight plant-microbe linkages during extreme drought scenarios, but trajectories after extreme drought vary with plant habitat and microbial functional groups.</p>
Project description:We addressed the question how the interaction between the beneficial root endophyte Serendipita vermifera (Sv) and the pathogen Bipolaris sorokiniana (Bs) affects fungal behavior and determines barley host responses using a gnotobiotic natural soil-based split-root system for phenotypic and transcriptional analyses.
2019-07-06 | GSE130517 | GEO
Project description:Fungal diversity in response to root-zone restricted grapevines