Project description:Differences between species promote stable coexistence in a resource-limited environment. These differences can result from interspecies competition leading to character shifts, a process referred to as character displacement. While character displacement is often interpreted as a consequence of genetically fixed trait differences between species, it can also be mediated by phenotypic plasticity in response to the presence of another species. Here, we test whether phenotypic plasticity leads to a shift in proteome allocation during co-occurrence of two bacterial species from the abundant, leaf-colonizing families Sphingomonadaceae and Rhizobiaceae in their natural habitat. Upon mono-colonizing of the phyllosphere, both species exhibit specific and shared protein functions indicating a niche overlap. During co-colonization, quantitative differences in the protein repertoire of both bacterial populations occur as a result of bacterial coexistence in planta. Specifically, the Sphingomonas strain produces enzymes for the metabolization of xylan, while the Rhizobium strain reprograms its metabolism to beta-oxidation of fatty acids fueled via the glyoxylate cycle and adapts its biotin acquisition. We demonstrate the conditional relevance of cross-species facilitation by mutagenesis leading to loss of fitness in competition in planta. Our results show that dynamic character displacement and niche facilitation mediated by phenotypic plasticity can contribute to species coexistence.
Project description:Segregated nucleus atypical monocyte (SatM) is novel monocyte cell type. Complehensive Gene expression pattern was examined not only in SatM but also its related cell type. We used microarrays to investigate the character of Segregated nucleus atypical monocyte (SatM) and commeted progenitors
Project description:Understanding the bacterial community structure, and their functional analysis for active bioremediation process is essential to design better and cost effective strategies. Microarray analysis enables us to simultaneously study the functional and phylogenetic markers of hundreds of microorganisms which are involved in active bioremediation process in an environment. We have previously described development of a hybrid 60-mer multibacterial microarray platform (BiodegPhyloChip) for profiling the bacterial communities and functional genes simultaneously in environments undergoing active bioremediation process (Pathak et al; Appl Microbiol Biotechnol,Vol. 90, 1739-1754). The present study involved profiling the status of bacterial communities and functional (biodegradation) genes using the developed 60-mer oligonucleotide microarray BiodegPhyloChip at five contaminated hotspots in the state of Gujarat, in western India. The expression pattern of functional genes (coding for key enzymes in active bioremediation process) at these sites was studied to understand the dynamics of biodegradation in the presence of diverse group of chemicals. The results indicated that the nature of pollutants and their abundance greatly influence the structure of bacterial communities and the extent of expression of genes involved in various biodegradation pathways. In addition, site specific factors also play a pivotal role to affect the microbial community structure as was evident from results of 16S rRNA gene profiling of the five contaminated sites, where the community structure varied from one site to another drastically.
2012-12-01 | GSE38004 | GEO
Project description:Microbial community analyses in the novel reactor for PNA process
Project description:We sequenced at mRNA level in adult hearts of zebrafish, pamprey and sea squirt. Combined with other 11 vertebrate heart RNA-Seq data online, we conducted comprehensive evolutionary genomic analyses to address the contribution of gene/genome duplications on heart structure evolution. We observed that number of duplicate genes expressed in heart increased gradually with the increase of heart chamber number along the vertebrate phylogeny, despite that most of them were duplicated at the time near to the origin of vertebrates or more ancient. Our research provides a clear-cut example to show the relationship among gene duplication, continuous character evolution like heart structure evolution and nature selection.
Project description:Understanding the bacterial community structure, and their functional analysis for active bioremediation process is essential to design better and cost effective strategies. Microarray analysis enables us to simultaneously study the functional and phylogenetic markers of hundreds of microorganisms which are involved in active bioremediation process in an environment. We have previously described development of a hybrid 60-mer multibacterial microarray platform (BiodegPhyloChip) for profiling the bacterial communities and functional genes simultaneously in environments undergoing active bioremediation process (Pathak et al; Appl Microbiol Biotechnol,Vol. 90, 1739-1754). The present study involved profiling the status of bacterial communities and functional (biodegradation) genes using the developed 60-mer oligonucleotide microarray BiodegPhyloChip at five contaminated hotspots in the state of Gujarat, in western India. The expression pattern of functional genes (coding for key enzymes in active bioremediation process) at these sites was studied to understand the dynamics of biodegradation in the presence of diverse group of chemicals. The results indicated that the nature of pollutants and their abundance greatly influence the structure of bacterial communities and the extent of expression of genes involved in various biodegradation pathways. In addition, site specific factors also play a pivotal role to affect the microbial community structure as was evident from results of 16S rRNA gene profiling of the five contaminated sites, where the community structure varied from one site to another drastically. Agilent one-color CGH experiment and one-color Gene Expresssion expereiment,Organism: Genotypic designed Agilent-17159 Genotypic designed Agilent Multibacterial 8x15k Array , Labeling kits: Agilent Genomic DNA labeling Kit (Part Number: 5190-0453) and Agilent Quick Amp Kit PLUS (Part number: 5190-0442).
Project description:We developed a new method for ChIP-seq with per-cell normalization (pc-ChIP-seq) to define PAX3-FOXO1 localization in rhabdomyosarcoma (RMS). We report novel pioneer function for the major driver oncogene in RMS, with nucleosome-motif targeting and kinetic displacement of nucleosomes in human cells.
Project description:Eukaryotic gene regulation implies that transcription factors gain access to genomic information via poorly understood processes involving activation and targeting of kinases, histone-modifying enzymes, and chromatin remodelers to chromatin. Here we report that progestin gene regulation in breast cancer cells requires a rapid and transient increase in poly-(ADP)-ribose (PAR), accompanied by a dramatic decrease of cellular NAD that could have broad implications in cell physiology. This rapid increase in nuclear PARylation is mediated by activation of PAR polymerase PARP-1 as a result of phosphorylation by cyclin-dependent kinase CDK2. Hormone-dependent phosphorylation of PARP-1 by CDK2, within the catalytic domain, enhances its enzymatic capabilities. Activated PARP-1 contributes to the displacement of histone H1 and is essential for regulation of the majority of hormone-responsive genes and for the effect of progestins on cell cycle progression. Both global chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) and gene expression analysis show a strong overlap between PARP-1 and CDK2. Thus, progestin gene regulation involves a novel signaling pathway that connects CDK2-dependent activation of PARP-1 with histone H1 displacement. Given the multiplicity of PARP targets, this new pathway could be used for the pharmacological management of breast cancer. PARP-1 activation mechanism by CDK2 in response of progestin in breast cancer cells