Project description:To explore the effects of metformin on the proliferation and ferroptosis of skin cutaneous melanoma (SKCM) and its potential molecular mechanisms, providing a new theoretical basis and strategy for the treatment of cutaneous melanoma. RNA-seq sequencing and related analyses were used to screen differentially expressed genes and explore their involved biological functions and signaling pathways. RNA-seq analysis found 2068 differentially expressed genes, of which 897 were up-regulated and 1171 were down-regulated. The related pathways such as iron metabolism disorders and ferroptosis were activated.
Project description:The dataset includes samples of 19 patients with cutaneous melanoma, 11 samples from donors with benign nevi as well as 11 control skin samples. All DNAs were derived from FFPE material. The cutaneous melanoma and benign nevi samples were macrodissected prior to DNA isolation. For methylation profiling the MethylationEPIC array from Illumina was used.
Project description:In this experiment, FFPE samples of 41 primary cutaneous melanoma, 2 metastatic melanoma and 6 normal skin were used for DNA extraction and genotyping by Affymetrix OncoScan FFPE Assay, in order to define chromosomal alterations in copy number and loss of heterozygosity. Genomic damage was then correlated with clinical features of melanoma.
Project description:The aim of the study was to analyze the transcriptional profile of Tregs and CD4 Teffectors present within melanoma cutaneous lesions
Project description:Background: Mucosal melanoma (MM) is epidemiologically, biologically, and molecularly distinct from cutaneous melanoma. Current treatment strategies have failed to significantly improve the prognosis for MM patients. This study aims to identify therapeutic targets and develop combination strategies by investigating the mechanisms underlying the tumorigenesis and progression of MM. Methods: We analyzed the copy number amplification of EZH2 in 547 melanoma patients and investigated its correlation with clinical prognosis. Utilizing cell lines, organoids, and patient-derived xenograft models, we assessed the impact of EZH2 on cell proliferation and sensitivity to ferroptosis. Further, we explored the mechanisms of ferroptosis resistance associated with EZH2 by conducting RNA sequencing and chromatin immunoprecipitation sequencing. Results: EZH2 copy number amplification was closely associated with malignant phenotype and poor prognosis in MM patients. EZH2 was essential for MM cell proliferation in vitro and in vivo. Moreover, genetic perturbation of EZH2 rendered MM cells sensitized to ferroptosis. Combination treatment of EZH2 inhibitor with ferroptosis inducer significantly inhibited the growth of MM. Mechanistically, EZH2 inhibited the expression of KLF14, which binds to the promoter of SLC7A11 to repress its transcription. Loss of EZH2 therefore reduced the expression of SLC7A11, leading to reduced intracellular SLC7A11-dependent glutathione synthesis to promote ferroptosis. Conclusion: Our findings not only establish EZH2 as a biomarker for MM prognosis, but also highlight the EZH2-KLF14-SLC7A11 axis as a potential target for MM treatment.
Project description:Background: Mucosal melanoma (MM) is epidemiologically, biologically, and molecularly distinct from cutaneous melanoma. Current treatment strategies have failed to significantly improve the prognosis for MM patients. This study aims to identify therapeutic targets and develop combination strategies by investigating the mechanisms underlying the tumorigenesis and progression of MM. Methods: We analyzed the copy number amplification of EZH2 in 547 melanoma patients and investigated its correlation with clinical prognosis. Utilizing cell lines, organoids, and patient-derived xenograft models, we assessed the impact of EZH2 on cell proliferation and sensitivity to ferroptosis. Further, we explored the mechanisms of ferroptosis resistance associated with EZH2 by conducting RNA sequencing and chromatin immunoprecipitation sequencing. Results: EZH2 copy number amplification was closely associated with malignant phenotype and poor prognosis in MM patients. EZH2 was essential for MM cell proliferation in vitro and in vivo. Moreover, genetic perturbation of EZH2 rendered MM cells sensitized to ferroptosis. Combination treatment of EZH2 inhibitor with ferroptosis inducer significantly inhibited the growth of MM. Mechanistically, EZH2 inhibited the expression of KLF14, which binds to the promoter of SLC7A11 to repress its transcription. Loss of EZH2 therefore reduced the expression of SLC7A11, leading to reduced intracellular SLC7A11-dependent glutathione synthesis to promote ferroptosis. Conclusion: Our findings not only establish EZH2 as a biomarker for MM prognosis, but also highlight the EZH2-KLF14-SLC7A11 axis as a potential target for MM treatment.