Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:The emergence and spread of polymyxin resistance, especially among Klebsiella pneumoniae isolates threaten the effective management of infections. This study profiled for polymyxin resistance mechanisms and investigated the activity of polymyxins plus vancomycin against carbapenem- and polymyxin-resistant K. pneumoniae.
Project description:Antibiotic use can lead to expansion of multi-drug resistant pathobionts within the gut microbiome that can cause life-threatening infections. Selective alternatives to conventional antibiotics are in dire need. Here, we describe a Klebsiella PhageBank that enables the rapid design of antimicrobial bacteriophage cocktails to treat multi-drug resistant Klebsiella pneumoniae. Using a transposon library in carbapenem-resistant K. pneumoniae, we identified host factors required for phage infection in major Klebsiella phage families. Leveraging the diversity of the PhageBank and experimental evolution strategies, we formulated combinations of phages that minimize the occurrence of phage resistance in vitro. Optimized bacteriophage cocktails selectively suppressed the burden of multi-drug resistant K. pneumoniae in the mouse gut microbiome and drove bacterial populations to lose key virulence factors that act as phage receptors. Further, phage-mediated diversification of bacterial populations in the gut enabled co-evolution of phage variants with higher virulence and a broader host range. Altogether, the Klebsiella PhageBank represents a roadmap for both phage researchers and clinicians to enable phage therapy against a critical multidrug-resistant human pathogen.
Project description:To investigate the whole-genome gene expression difference between the wild-type and capsule deletion mutant in Klebsiella pneumoniae MGH 78578. The mutants analyzed in this study are further described in Huang T.W., Stapleton J.C., Chang H.Y., Tsai S.F., Palsson B.O., Charusanti P. Capsule removal via lambda-Red knockout system perturbs biofilm formation and fimbriae extression in Klesiella pneumoniae MGH 78578 (manuscript submission) A six chip study using total RNA recovered from three separate wild-type cultures and three separate cultures of a capsule deltion mutant of Klebsiella pneumoniae MGH 78578. The capsule gene cluster (KPN_02493 to KPN_02515) was entirely removed in the capsule deletion mutant. Each chip measures the expression level of 5,305 genes from Klebsiella pneumoniae MGH 78578 and the associated five plasmids (pKPN3, pKPN4, pKPN5, pKPN6 and pKPN7) with 50-mer oligo tiling array with 30-mer spacer.
Project description:Hypervirulent Klebsiella pneumoniae (HvKP) is an emerging human pathogen causing invasive infection in immune-competent hosts. The hypervirulence is strongly linked to the overproduction of hypermucovisous capsule, but the underlining regulatory mechanism of hypermucoviscosity (HMV) has been elusive, especially at the post-transcriptional level mediated by small RNAs (sRNAs). Using a recently developed RNA interactome profiling approach, we have investigated the Hfq-associated sRNA regulatory network and established the first in vivo RNA-RNA interactome in HvKP. Our data reveal numerous interactions between sRNAs and HMV-related mRNAs, and identify a plethora of sRNA that inhibit or promote HMV. One of the strongest repressors of HMV was ArcZ, a conserved sRNA in the Enterobacteriaceae family. We found that ArcZ is activated by the master regulator of catabolite repression Crp, and down-regulates the expression of mlaA encoding an outer-membrane lipoprotein, leading to decreased HMV and virulence attenuation in mice. ArcZ significantly reduced HMV in several carbapenem-resistant and hypervirulent clinical isolates with diverse genetic background, suggesting it is an antisense RNA inhibitor of HMV with therapeutic potential. In summary, our work provides a comprehensive map of the RNA-RNA interaction network of HvKP and identifies ArcZ as a conserved repressor of HMV, providing novel insights into the mechanisms of posttranscriptional regulations of virulence.