Project description:Wnt regulates various cell responses. In dental pulp cells, Wnt signaling control cell proliferation, apoptosis, migration and differentiation. Here, the differential gene expression of human dental pulp stem cells treated with Wnt ligands or Wnt agonist was examined using a high throughput RNA sequencing technique. Results demonstrated that Wnt ligands or Wnt agonist altered numerous gene expression in human dental pulp stem cells.
Project description:We have performed gene expression microarray analysis to profile transcriptomic signatures affected by EtOH in human dental pulp stem cells Established human dental pulp stem cells were treated with different dose of EtOH (0, 1, 5, 10, 20 and 50mM) for a different time periods (24 and 48 hrs). Total RNA was extracted and subjected to gene expression microarray analysis using Affymetrix human genome 2.0 plus array
Project description:Human mesenchymal stem cells are a promising cell source for the treatment of stroke. Their primary mechanism of action occurs via neuroprotective effects by trophic factors, anti-inflammatory effects, and immunomodulation. However, the regeneration of damaged neuronal networks by cell transplantation remains still challenging. We hypothesized that cells induced to neural lineages would fit the niche, replace the lesion, and be more effective in improving symptoms compared with stem cells themselves. We investigated the characteristics of induced neural cells from human dental pulp tissue and compared the transplantation effects between these induced neural cells and uninduced dental pulp stem cells. Induced neural cells or dental pulp stem cells were intracerebrally transplanted 5 days after cerebral infarction induced by permanent middle cerebral artery occlusion in immunodeficient mice. Effects on functional recovery were also assessed through behavior testing. We used immunohistochemistry and neuron tracing to analyze the differentiation, axonal extension, and connectivity of transplanted cells to the host’s neural circuit. Transplantation of induced neural cells from human dental pulp ameliorated functional recovery after cerebral infarction compared with dental pulp stem cells. The induced neural cells comprised both neurons and glia and expressed functional voltage, and they were more related to neurogenesis in terms of transcriptomics. Induced neural cells had a higher viability than did dental pulp stem cells in hypoxic culture. We showed that induced neural cells from dental pulp tissue offer a novel therapeutic approach for recovery after cerebral infarction.
Project description:Dental pulp plays a crucial role for dental health, and dental pulp aging influences their regenerative and reparative function. However, the underlying molecular mechanisms of dental pulp aging are not exhaustively understood, and thereby an in-depth and complete understanding of the aged dental pulp is of foremost importance. This study aimed to explore the heterogeneity of young and aged dental pulp tissue using single-cell RNA sequencing (scRNA-seq).
Project description:Small molecules, BIO and Lithium chloride are widely used to activate Wnt signaling. It has been shown that these molecules induced beta-catenin accumulation and translocation, leading to the activation of Wnt signaling. These molecules also control various cell responses. Here, the differential gene expression of human dental pulp stem cells treated with BIO and Lithium chloride was examined using a high throughput RNA sequencing technique. Results demonstrated that BIO and Lithium chloride regulated the mRNA expression of various genes in human dental pulp stem cells.
Project description:Using the HumanMethylation450 Beadchip, whole genomes of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells (DFPCs) were compared.The DNA methylation profiles were obtained across approximately 485,512 CpGs in human odontogenic stem cells samples. Samples included DPSCs, DFPCs and PDLSCs from each 4 (12 in total) human individuals.
Project description:The specific cellular heterogeneity of dental pulp cells, especially dental stem cells in different spatial and temporal level was proviede. So we used single cell RNA sequencing to analysis this question.
Project description:It is well known that dental pulp tissue can evoke some of the most severe acute inflammation observed in the human body. We found that dental pulp cells secrete a factor that induces tumor necrosis factor-α production from macrophages, and designated this factor, dental pulp cell-derived tumor necrosis factor-α-inducing factor (DPTIF). DPTIF was induced in dental pulp cells and transported to recipient cells via microvesicles. Treatment of dental pulp cells with a PKR inhibitor markedly suppressed DPTIF activity, and weak interferon signals were constitutively activated inside the cells. In recipient macrophages, stimulation with DPTIF-containing supernatants from pulp cells resulted in activation of both nuclear factor-κB and MAP kinases like JNK and p38. Proteomics analyses revealed that many stress granule-related proteins were present in supernatants from dental pulp cells as well as microvesicle marker proteins like GAPDH, β-actin, HSPA8, HSPB1, HSPE1, and HSPD1. Furthermore, giant molecule AHNAK and PKR were detected in microvesicles derived from dental pulp cells, and gene silencing of AHNAK in pulp cells led to reduced DPTIF activity. Thus, it appeared that the core protein of DPTIF was PKR, and that PKR was maintained in an active state in stress granule aggregates with AHNAK and transported via microvesicles. The activity of DPTIF for TNF-α induction was far superior to that of gram-negative bacterial endotoxin. Therefore, we, report for the first time, that active PKR is transported via microvesicles as stress granule aggregates and induces powerful inflammatory signals in macrophages.