Project description:In order to investigate the gene experssion changes in Campylobacter jejuni triggered by exposure to Novobiocin. DNA microarray was used to identify genes that were differentially expressed in C. jejuni 11168 treated with Novobiocin. For RNA extraction, Campylobacter cells were grown 4 hrs in MH broth to the mid exponential phase (OD600=0.4-0.5) with shaking rates 180rpm at 42°C, and then split into two equal portions, one of which was treated with subinhibitory dose of Novobiocin (256ug/ml, 0.25 MIC) and the other served as a non-treated control, all of these samples were incubated at 42°C for 30 min under microaerobic conditions, RNA samples were extracted from 4 independent treatments and 4 non-treated controls. Then cDNA was synthesized using aminoallyl-dNTP and RNA samples according to the manufacturerâs instruction. After purification, aminoallyl labeled cDNA was fluorescently labeled with Cy-3/Cy-5 mono-Reactive Dye Pack.
Project description:Campylobacter jejuni is susceptible to killing through exposure to blue light (405 nm) due to its poor ability to detoxify reactive oxygen species. This analysis aimed to elucidate the transcriptomic response of Campylobacter jejuni exposed to 405 nm light through illumina sequencing. C. jejuni was grown and exposed to 405nm light. Samples were taken at 15 min (7 J cm-1) and 30 min (14 J cm-1) after exposure. The data generated were compared to the transcriptome pre-exposure to determine the changes associated with blue light exposure
Project description:Expression arrays comparing Campylobacter jejuni 11168 before and after serial passage in C57 BL/6 IL-10 deficient mice. Gene expression was compared during exponential growth in Bolton broth.
Project description:Campylobacter, a major foodborne pathogen, is increasingly resistant to macrolide antibibotics. Previous findings suggested that development of macrolide resistance in Campylobacter requires a multi-step process, but the molecular mechanisms involved in the process are not known. In our study, erythromycin-resistant C. jejuni mutant (R) was selected in vitro by stepwise exposure of C. jejuni NCTC11168(S) to increasing concentrations of erythromycin.The resistant were subjected to microarray and the the global transcriptional profile was analyzed. In this series, DNA microarray was used to compare the gene expression profiles of the macrolide-resistant strain with its parent wild-type strain NCTC11168. A large number of gene showed significant changes in R. The up-regulated genes in the resistant strains are involved in miscellaneous periplasmic proteins, efflux protein and putative aminotransferase, while the majority of the down-regulated genes are involved in electron transport, lipoprotein, heat shock protein and unknown function proteins. The over-expression of efflux pump and periplasmic protein was involved in the development of resistance to macrolide in C. jejuni. An eight chip study using total RNA recovered from four separate resistant-type cultures of Erythrocin-resistant Campylobacter jejuni NCTC111168 (R) and four separate cultures of Campylobacter jejuni NCTC111168 (S). Each chip measures the expression level of 1634 genes from Campylobacter jejuni NCTC11168.
Project description:Expression arrays comparing Campylobacter jejuni NCTC11168 during growth in the cecum of germ-free C57 BL/6 IL-10 knockout mice to C. jejuni NCTC11168 during growth in Bolton broth.
Project description:Campylobacter jejuni is the most prevalent cause of foodborne bacterial enteritis worldwide. This study aims at the characterisation of pathomechanisms and signalling in Campylobacter-induced diarrhoea in the human mucosa. During routine colonoscopy, biopsies were taken from patients suffering from campylobacteriosis. RNA-seq of colon biopsies was performed to describe Campylobacter jejuni-mediated effects. Mucosal mRNA profiles of acutely infected patients and healthy controls were generated by deep sequencing using Illumina HiSeq 2500. This data provide the basis for subsequent upstream regulator analysis.
Project description:C. jejuni, a spiral-shaped gram-negative bacterium, is a leading bacterial cause of human foodborne illness. Acute disease is associated with C. jejuni invasion of the intestinal epithelium. Further, maximal host cell invasion requires the secretion of proteins termed Campylobacter invasion antigens (Cia). As bile acids are known to alter the pathogenic behavior of other gastrointestinal pathogens, we hypothesized that the virulence potential of Campylobacter may be triggered by the bile acid deoxycholate (DOC). In support of this hypothesis, culturing C. jejuni with a physiologically relevant concentration of DOC significantly altered the kinetics of cell invasion as evidenced by gentamicin-protection assays. In contrast to C. jejuni harvested from Mueller-Hinton (MH) agar plates, C. jejuni harvested from MH agar plates supplemented with DOC demonstrated Cia secretion as judged by metabolic labeling experiments. DOC was also found to induce the expression of the ciaB gene as judged by B-galactosidase reporter assays and real-time RT-PCR. Microarray analysis revealed that DOC induced the expression of virulence genes (i.e., ciaB, cmeABC, dccR, and tlyA). In summary, we demonstrate that it is possible to enhance the pathogenic behavior of C. jejuni by modifying the culture conditions. These results provide a foundation to identify genes expressed by C. jejuni in response to in vivo-like culture conditions. Keywords: Stress response
Project description:Campylobacter, a major foodborne pathogen, is increasingly resistant to macrolide antibibotics. Previous findings suggested that development of macrolide resistance in Campylobacter requires a multi-step process, but the molecular mechanisms involved in the process are not known. In our study, erythromycin-resistant C. jejuni mutant (R) was selected in vitro by stepwise exposure of C. jejuni NCTC11168(S) to increasing concentrations of erythromycin.The resistant were subjected to microarray and the the global transcriptional profile was analyzed. In this series, DNA microarray was used to compare the gene expression profiles of the macrolide-resistant strain with its parent wild-type strain NCTC11168. A large number of gene showed significant changes in R. The up-regulated genes in the resistant strains are involved in miscellaneous periplasmic proteins, efflux protein and putative aminotransferase, while the majority of the down-regulated genes are involved in electron transport, lipoprotein, heat shock protein and unknown function proteins. The over-expression of efflux pump and periplasmic protein was involved in the development of resistance to macrolide in C. jejuni.