ABSTRACT: Combined analysis of 16S rRNA sequencing and metabolomics reveals the growth-promoting mechanism of compound probiotics in zig-zag eel (Mastacembelus armatus)
Project description:Sequential hermaphroditism, whereby the sex of one individual changes during its development, has been described in many fish species. Yet, the genetic regulation of this dynamic process of sexual differentiation is not well understood. Here, we report the characterization of sequential hermaphroditism in an aquacultural fish, the zig-zag eel (Mastacembelus armatus), based on 4 years of artificial breeding. All M. armatus individuals initially developed as females, with approximately half of them then becoming males after going through an intersex phase.
Project description:The zig-zag model of host-pathogen interaction describes the relative strength of defense response across a spectrum of pathogen-induced plant phenotypes. A stronger defense response results in increased resistance. Here, we investigate the strength of pathogen virulence during disease and place these findings in the context of the zig-zag model. Xanthomonas vasicola pv. holcicola (Xvh) causes sorghum bacterial leaf streak. Despite being widespread, this disease has not been described in detail at the molecular level. We divided diverse sorghum genotypes into three groups based on disease symptoms: water-soaked lesions, red lesions, and resistance. Bacterial growth assays confirmed that these three phenotypes represent a range of resistance and susceptibility. To simultaneously reveal defense and virulence responses across the spectrum of disease phenotypes, we performed dual RNA-seq on Xvh-infected sorghum. Consistent with the zig-zag model, the expression of plant defense-related genes was strongest in the resistance interaction. Surprisingly, bacterial virulence genes related to the type III secretion system (T3SS) and type III effectors (T3Es) were also most highly expressed in the resistance interaction. This expression pattern was observed at multiple time points within the sorghum-Xvh pathosystem. Further, a similar expression pattern was observed in Arabidopsis infected with Pseudomonas syringae for effector-triggered immunity via AvrRps4 but not AvrRpt2. Specific metabolites were able to repress the Xvh virulence response in vitro and in planta suggesting a possible signaling mechanism. Taken together, these findings reveal multiple permutations of the continually evolving host-pathogen arms race from the perspective of host defense and pathogen virulence responses.