Project description:Powdery mildew (PM) is one of the most important and widespread plant diseases caused by obligate biotrophic Ascomycete fungi in the order of Erysiphales. Monocot PM fungi such as Blumeria graminis f.sp. hordei (Bgh) infectious on barley and B. graminis f.sp. tritici (Bgt) infectious on wheat exhibit high-level of host-specialization. By contrast, many dicot PM fungi display rather broad host ranges. To understand why different PM fungi adopt distinct modes of host-adaption, we sequenced the genomes of four dicot PM strains belonging to Golovinomyces cichoracearum (GcC1, GcM1, GcM3) or Oidium neolycopersici (OnM2) and conducted comparative sequence analyses. PM fungi have highly repetitive genomes that are difficult to perform gene prediction. By combing RNA-seq expression evidence with ab initio gene prediction, we successfully improved the number of predicted genes from 4000 to 6000. By comparing the transcriptional profiling from haustoria with mycelia in OnM2 and GcM3, we found that 86%-96% of the predicted genes are expressed in mycelia and/or haustoria, indicating an efficient expression system of PM fungi. Besides, our results showed that gene regulation mechanisms in haustorial cells maybe under gone a much higher level of diversification between OnM2 and GcM3, since they share only a small proportion (21%) of genes up-regulated in huastoria cells. Notably, a higher proportion of candidate effector genes are selectively up-regulated in haustorial cells, agreeing with their function in suppressing host defense and facilitating nutrient uptake.
2018-06-01 | GSE85906 | GEO
Project description:Cultivation Material Compost Fungi
Project description:Oral administration of an extract of compost fermented with thermophiles to pigs reduces the incidence of stillbirth and promotes piglet growth. However, the mechanism by which compost extract modulates the physiological conditions of the animals remains largely unknown. Here, we investigate the effects of compost extract on the gene expression in the intestine of the rat as a mammalian model. Gene expression analyses of the intestine indicated that several immune-related genes were upregulated following compost exposure. Thus, thermophile-fermented compost can contain microbes and/or substances that activate the gut mucosal immune response in the rat.
Project description:Composts are the products obtained after the aerobic degradation of different types of organic matter wastes and can be used as substrates or substrate/soil amendments. There are a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost as growing medium compared to standard substrates. The purpose of this study was to unravel the gene expression alteration produced by the compost to gain knowledge about the mechanisms involved in the compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis compared to the standard substrate perlite. Microarray analyses revealed that 178 genes were differently expressed with a fold change cut off of 1 from which 155 were upregulated and 23 were down regulated in compost-grown compared to perlite-grown plants. Functional enrichment study of up regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched terms as well as immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA dependent/independent abiotic stress responses.
Project description:To investigate the impact of PJA2 on the progression of colorectal cancer, we employed lentiviral constructs to establish PJA2-overexpressing SW-480 cell lines. Subsequently, we conducted gene expression profiling analysis using RNA-seq data obtained from both vector SW-480 cells and PJA2-overexpressing SW-480 cells.
Project description:Find the possible signaling pathways which contribute to the cell growth inhibition effect of SW-treated AGS cells Global gene expression profiling is an ideal technique to obtain useful clues for exploration of the anticancer mechanism of SW. Through comparing microarray results between solvent- and SW-treated cells, differentially expressed genes were obtained (>1.5 fold). The microarray results were validated using real-time RT-PCR. We used the KEGG database, STRING database and GO database for further ananlysis, and therefore got the possible signaling pathways underlying the anticancer effect of SW.
Project description:To find the possible signaling pathways which contribute to the anticancer effect of SW-treated HepG2 cells Global gene expression profiling is an ideal technique to obtain useful clues for exploration of the anticancer mechanism of SW. Through comparing microarray results between solvent- and SW-treated cells, differentially expressed genes were obtained (>1.5 fold). The microarray results were validated using real-time RT-PCR. We used the KEGG database, STRING database and GO database for further ananlysis, and therefore got the possible signaling pathways underlying the anticancer effect of SW.
Project description:Various saprotrophic microorganisms, especially filamentous fungi, can efficiently degrade lignocellulose that is one of the most abundant natural material on earth. It consists of complex carbohydrates and aromatic polymers found in plant cell wall and thus in plant debris. Aspergillus fumigatus Z5 was isolated from compost heaps and showed highly efficient plant biomass-degradation capability.Genome analysis revealed an impressive array of genes encoding cellulases, hemicellulases, and pectinases involved in lignocellulosic biomass degradation. We sequenced the transcriptomes of Aspergillus fumigatus Z5 induced by sucrose, xylan, cellulose and rice straw, respectively. There were 444, 1711 and 1386 significantly differently (q-value ≤ 0.0001 and |log2 of the ratio of the RPM values| ≥ 2) expressed genes in xylan, cellulose and rice straw,respectively, relative to sucrose control.
Project description:Composts are the products obtained after the aerobic degradation of different types of organic matter wastes and can be used as substrates or substrate/soil amendments. There are a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost as growing medium compared to standard substrates. The purpose of this study was to unravel the gene expression alteration produced by the compost to gain knowledge about the mechanisms involved in the compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis compared to the standard substrate perlite. Microarray analyses revealed that 178 genes were differently expressed with a fold change cut off of 1 from which 155 were upregulated and 23 were down regulated in compost-grown compared to perlite-grown plants. Functional enrichment study of up regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched terms as well as immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA dependent/independent abiotic stress responses. Global gene expression of plants grown in compost (3 biological replicates) versus plants grown in perlite (2 biological replicates) was studied.