Project description:Hepatic molecular adaptations underlying periparturient metabolic diseases such as ketosis in dairy cows are largely unknown. We used a simple model for induction of ketosis to examine liver gene expression profiles using a microarray consisting of 13,257 annotated cattle oligonucleotides. At 4 days post-partum, 7 cows classified as healthy after a physical examination were fed at 50% of intake at day 4 from day 5 to signs of ketosis or until 14 days post-partum. Another group of 7 healthy cows served as controls. Liver was biopsied at 9-14 (ketosis) or 14 days post-partum (controls). More than 9,000 sequences represented on the microarray were expressed in liver. Keywords: disease state analysis
2007-10-09 | GSE4304 | GEO
Project description:Fecal microbiota data from ketosis and healthy cows
| PRJNA1188079 | ENA
Project description:16S rRNA sequencing of hindgut microbiome in the healthy and ketosis cows
| PRJNA998098 | ENA
Project description:Bacterial community in dairy cows with ketosis
Project description:Bovine mastitis causes changes in the serum exosomal miRNAs expression. Serum samples from healthy dairy cows (n = 7) were compared to those of cows with subclinical (n = 7 ) using small RAN sequencing. Three hundred fifty-five miRNAs (341 known and 14 novel ones) were identified. There were 42 miRNAs up-regulated in serum-derived EVs from cows with subclinical mastitis, including bta-miR-1246, bta-miR-2431-3p, bta-miR-126-3p, bta-miR-29a, etc. The MAPK signaling pathway was the most affected pathway by clinical mastitis. Thus, miRNA alterations in mastitis serum-derived EVs support the potential regulator role of specific miRNAs as exosomal cargo in clinical mastitis physiology.
2022-08-31 | GSE202849 | GEO
Project description:Fecal metagenomic Binning in healthy and ketosick cows
Project description:In the present study, transcript profiling was carried out in the liver samples from wk 5 of lactation in order to identify genes and pathways regulated by rumen-protected CLA during early lactation. The first wks after parturition represent a critical phase in the productive cycle of high-yielding dairy cows because the liver experiences pronounced metabolic and inflammatory stress which increases the risk to develop liver-associated diseases, such as fatty liver and ketosis.
Project description:The regulation of endometrial inflammation has important consequences for the resumption of bovine fertility post-partum. All cows experience bacterial influx into the uterus after calving; however a significant proportion fail to clear infection leading to the development of cytological endometritis (CE) and compromised fertility. We hypothesised that early immunological changes could not only act as potential prognostic biomarkers for the subsequent development of disease but also shed light on the pathogenesis of endometritis in the post-partum dairy cow. Here, next-generation sequencing from endometrial biopsies taken at 7 days post-partum (DPP) identified significant expression of inflammatory genes in all cows. Despite the common inflammatory profile and enrichment of the Toll-like receptor, NFκB and TNF signalling pathways, 73 genes and 31 miRNAs differentiated between healthy cows (HC, n=9) and cows which subsequently developed CE at 7 DPP (n=6, FDR<0.1). In healthy cows, 4197 differentially expressed genes between 7 and 21 DPP whereas only 31 genes were differentially expressed in samples from cows with CE. At 21 DPP, a further 1167 genes were differentially expressed between HC cows and cows diagnosed with CE (FDR<0.1). These changes in host gene expression reflected culture-independent microbiological analysis which showed significant differences in uterine bacterial profiles between groups. Inflammatory activity was not confined to the uterus; decreased circulating granulocytes and increased Acute Phase Protein (SAA and HP) plasma expression levels were detected at 7 DPP in cows that developed CE. In conclusion, our data suggests that the major inflammatory cascade activated early post-partum is resolved thereby restoring homeostasis in healthy cows by 21 DPP, but this transition fails to occur in cows which develop CE. Despite a common inflammatory profile, differential expression of specific immune genes may identify cows at risk of prolonged inflammation and the development of CE post-partum.
Project description:Developing embryos are susceptible to fluctuations in the nutrients and metabolites concentrations within the reproductive tract, which can lead to alterations in their developmental trajectory. Ketotic dairy cows have diminished fertility, and elevated levels of the ketone body beta-hydroxybutyrate (BHB) have been associated with poor embryonic development. We used an in vitro model based on either in vitro fertilization (IVF) or parthenogenesis to investigate the effects of BHB on the preimplantation bovine embryo development, epigenome, and transcriptome. Embryo culture medium was supplemented with BHB at a similar concentration to that present in the blood of cows suffering with severe ketosis, followed by analysis of blastocysts formation rate, diameter, total number of cells, levels of H3K9 beta-hydroxybutyrylation (H3K9bhb), apoptosis, and transcriptional alterations. As a result, we observed that BHB reduced the blastocysts rates, the diameter and the total number of cells in both parthenotes and IVF embryos. Exposure to BHB for either 3 or 7 days greatly increased the H3K9bhb levels in parthenotes at the 8-cells and blastocyst stages, and affected the expression ofHDAC1,TET1,DNMT1,KDM6B,NANOGandMTHFD2genes. Additionally, culture of IVF embryos with BHB for 7 days dramatically increased H3K9bhb and reduced NANOG in blastocysts. RNA-seq analysis of IVF blastocysts revealed that BHB modulated the expression of 118 genes, which were involved with biological processes such as embryonic development, implantation, reproduction, proliferation, and metabolism. These findings provided valuable insights into the mechanisms through which BHB disrupts preimplantation embryonic development and affects the fertility in dairy cows.