Project description:Investigating genome-wide characteristics of CNVs in 6 horses representing 6 distinct breeds by using the aCGH method and performed GO and KEGG analysis for the CNVs genes.This result is an important complement to the mapping of horse whole-genome CNVs and helpful to study plateau horsesM-bM-^@M-^Y adaption to the plateauM-bM-^@M-^Ys environment. Comparison Mongolia horse , Abaga horse, Hequ horse, Kazakh horse, Debao pony, Thoroughbred with Thoroughbred
Project description:Custom exon aCGH analysis of copy number across the genomes of 16 horse breeds Two-condition experiment, All breed samples were compared to a single Thoroughbred reference, Reference was then compared to Twilight (DNA from horse used for reference genome assembly)
Project description:Horse-specific genes are not readily identified from available equine EST/cDNA resources due to relatively limited coverage. In addition, equine gene sets predicted in silico by Ensembl and NCBI will not identify horse specific genes since they rely on homology-based projection of gene structure annotation from other species. In this study, RNA-seq of 8 equine RNA samples representing 6 distinct tissues was performed and used to improve and refine equine gene structure annotation. The samples and RNA were collected as part of the related study E-GEOD-21925 and are described in Coleman et al 2010. Anim Genet 41 Suppl 2: 121-30 (PMID: 21070285). The RNA from these samples was re-sequenced in this experiment. The tissues were i). the articular cartilage and synovial membrane samples from a 3-year-old male pony. The left carpal joints received four LPS injections (0.5 ng) over 8 days, while the right carpal joints received control injections of PBS. ii) A cerebellum sample was collected from a 2-year-old female thoroughbred. iii) A testis sample from a 4-year-old thoroughbred. iv) A placental villous sample collected immediately post-partum from a full-term female thoroughbred foal. v) A whole embryo sample was obtained from a 34-day-old male thoroughbred conceptus. The embryo, cerebellum, testis and placental samples were of apparent normal gross morphology.
Project description:We sequenced the whole mRNA of six thoroughbred horse (Equus caballus) blood and muscle tissues before and after exercising, generating a total of 1.3 billion short reads with 90-bp pair-end sequences from 24 samples. Comparing with current genome annotation, we identified 32,361 unigene clusters spanning 51.83 Mb that contained 11,933 (36.87%) annotated genes. More than 60% (20,428) unigene clusters did not match any current equine gene model. We identified 189,973 single nucleotide variations (SNVs) from the aligned sequences against the horse reference. Most SNVs (171,558 SNVs; 90.31%) were novel compared with over 1.1 million equine SNPs from two databases. Some genes have significantly different expression levels under different environment. We define those identical genes which have different expression levels are ‘differentially expressed’ and carried out differentially expressed gene analysis before and after exercise conditions. We discovered, 62 up- and 80 down-regulated genes in the blood and 878 up- and 285 down-regulated genes in the muscle from the 24 samples. Six out of 28 previously exercise-related known genes, HIF1A, ADRB2, PPARD, VEGF, TNC, and BDNF, were highly expressed in the muscle after exercise. We discovered 56 functionally unknown transcription factors that are probably associated with an early regulatory exercise mechanism from 91 differentially expressed transcription factors. We found interesting RNA expression patterns where different alternative splicing forms of the same gene showed reversed expressions before and after exercising. whole mRNA sequencing profiles of six thoroughbred horse (Equus caballus) blood and muscle tissues before and after exercising
Project description:An Infinium microarray platform (GPL28271, HorvathMammalMethylChip40) was used to generate DNA methylation data from many tissues from horses We generated DNA methylation data from n=333 horse tissue samples representing tissues. Blood samples were collected via venipuncture into EDTA tubes from across 24 different horse breeds (buffy coat). The other tissues were collected at necropsy. The tissue atlas was generated from two Thoroughbred mares as part of the FAANG initiative 37, with the following tissues profiled: adipose (gluteal), adrenal cortex, blood (PBMCs; only n=1 mare), cartilage (only n=1 mare), cecum, cerebellum (2 samples each from lateral hemisphere and vermis), frontal cortex, duodenum, fibroblast, heart (2 samples each from the right atrium, left atrium, right ventricle, left ventricle), hypothalamus, ileum, jejunum, keratinocyte, kidney (kidney cortex and medulla), lamina, larynx (i.e. cricoarytenoideus dorsalis muscle), liver, lung, mammary gland, mitral valve of the heart, skeletal muscle (gluteal muscle and longissimus muscle), occipital cortex, ovary, parietal cortex, pituitary, sacrocaudalis dorsalis muscle, skin, spinal cord (C1 and T8), spleen, suspensory ligament, temporal cortex, tendon (deep digital flexor tendon and superficial digital flexor tendon), uterus.
Project description:Sixteen severly RAO (Recurrent Airway Obstruction) affected horses were studied. All RAO affected male horses were hybridized with GSM1332974 (Thoroughbred male 1, male reference), and the female horses were with GSM1332975 (Thoroughbred female 2, female reference). Finally results are compared with GSE55266 and two other control horses (SPA-H1-3 and SPA-H1-5) and relatively novel RAO CNVs were reported.
Project description:We sequenced the whole mRNA of six thoroughbred horse (Equus caballus) blood and muscle tissues before and after exercising, generating a total of 1.3 billion short reads with 90-bp pair-end sequences from 24 samples. Comparing with current genome annotation, we identified 32,361 unigene clusters spanning 51.83 Mb that contained 11,933 (36.87%) annotated genes. More than 60% (20,428) unigene clusters did not match any current equine gene model. We identified 189,973 single nucleotide variations (SNVs) from the aligned sequences against the horse reference. Most SNVs (171,558 SNVs; 90.31%) were novel compared with over 1.1 million equine SNPs from two databases. Some genes have significantly different expression levels under different environment. We define those identical genes which have different expression levels are ‘differentially expressed’ and carried out differentially expressed gene analysis before and after exercise conditions. We discovered, 62 up- and 80 down-regulated genes in the blood and 878 up- and 285 down-regulated genes in the muscle from the 24 samples. Six out of 28 previously exercise-related known genes, HIF1A, ADRB2, PPARD, VEGF, TNC, and BDNF, were highly expressed in the muscle after exercise. We discovered 56 functionally unknown transcription factors that are probably associated with an early regulatory exercise mechanism from 91 differentially expressed transcription factors. We found interesting RNA expression patterns where different alternative splicing forms of the same gene showed reversed expressions before and after exercising.