Project description:A whole genome microarray approach has been engaged in the heterothallic euascomycete Podospora anserina to identify genes that are differentially expressed beetwen a wild type kinetics of sexual reproduction and two mutant strains ∆RID and ∆SMR1.
2019-09-16 | GSE104632 | GEO
Project description:Evolution of the mating-type chromosomes in the fungal Podospora anserina species complex
Project description:Abstract BACKGROUND: Mating-type loci in yeasts and ascomycotan filamentous fungi (Pezizomycotina) encode master transcriptional factors that play a critical role in sexual development. Genome-wide analyses of mating-type-specification circuits and mating-type target genes are available in Saccharomyces cerevisiae and Schizosaccharomyces pombe; however, no such analyses have been performed in heterothallic (self-incompatible) Pezizomycotina. The heterothallic fungus Podospora anserina serves as a model for understanding the basic features of mating-type control. Its mat+ and mat- mating types are determined by dissimilar allelic sequences. The mat- sequence contains three genes, designated FMR1, SMR1 and SMR2, while the mat+ sequence contains one gene, FPR1. FMR1 and FPR1 are the major regulators of fertilization, and this study presents a genome-wide view of their target genes and analyzes their target gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: The transcriptomic profiles of the mat+ and mat- strains revealed 157 differentially transcribed genes, and transcriptomic analysis of fmr1(-) and fpr1(-) mutant strains was used to determine the regulatory actions exerted by FMR1 and FPR1 on these differentially transcribed genes. All possible combinations of transcription repression and/or activation by FMR1 and/or FPR1 were observed. Furthermore, 10 additional mating-type target genes were identified that were up- or down-regulated to the same level in mat+ and mat- strains. Of the 167 genes identified, 32 genes were selected for deletion, which resulted in the identification of two genes essential for the sexual cycle. Interspecies comparisons of mating-type target genes revealed significant numbers of orthologous pairs, although transcriptional profiles were not conserved between species. CONCLUSIONS/SIGNIFICANCE: This study represents the first comprehensive genome-wide analysis of mating-type direct and indirect target genes in a heterothallic filamentous fungus. Mating-type transcription factors have many more target genes than are found in yeasts and exert a much greater diversity of regulatory actions on target genes, most of which are not directly related to mating.
Project description:The project compares the production of plant biomass degrading enzymes by Podospora anserina during growth on different feed stocks.
Project description:Abstract BACKGROUND: Mating-type loci in yeasts and ascomycotan filamentous fungi (Pezizomycotina) encode master transcriptional factors that play a critical role in sexual development. Genome-wide analyses of mating-type-specification circuits and mating-type target genes are available in Saccharomyces cerevisiae and Schizosaccharomyces pombe; however, no such analyses have been performed in heterothallic (self-incompatible) Pezizomycotina. The heterothallic fungus Podospora anserina serves as a model for understanding the basic features of mating-type control. Its mat+ and mat- mating types are determined by dissimilar allelic sequences. The mat- sequence contains three genes, designated FMR1, SMR1 and SMR2, while the mat+ sequence contains one gene, FPR1. FMR1 and FPR1 are the major regulators of fertilization, and this study presents a genome-wide view of their target genes and analyzes their target gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: The transcriptomic profiles of the mat+ and mat- strains revealed 157 differentially transcribed genes, and transcriptomic analysis of fmr1(-) and fpr1(-) mutant strains was used to determine the regulatory actions exerted by FMR1 and FPR1 on these differentially transcribed genes. All possible combinations of transcription repression and/or activation by FMR1 and/or FPR1 were observed. Furthermore, 10 additional mating-type target genes were identified that were up- or down-regulated to the same level in mat+ and mat- strains. Of the 167 genes identified, 32 genes were selected for deletion, which resulted in the identification of two genes essential for the sexual cycle. Interspecies comparisons of mating-type target genes revealed significant numbers of orthologous pairs, although transcriptional profiles were not conserved between species. CONCLUSIONS/SIGNIFICANCE: This study represents the first comprehensive genome-wide analysis of mating-type direct and indirect target genes in a heterothallic filamentous fungus. Mating-type transcription factors have many more target genes than are found in yeasts and exert a much greater diversity of regulatory actions on target genes, most of which are not directly related to mating. With GPL10116 : 4 conditions each with four biological replicates :mat+, mat-, fpr1-, fmr1-; common reference is a pool of four conditions M48h, M96h, C48h and C96h ; Conditions are labelled in Cy3 and the common reference in Cy5
Project description:Podospora anserina is an established aging model with a strong mitochondrial etiology of aging. Here we performed a complexome analysis of isolated mitochondria to study age-related changes of assembled mitochondrial protein complexes. The analysis revealed prominent age-related alterations in oxidative phosphorylation (OXPHOS) and the induction of non-mitochondrial salvage pathways.
Project description:Here we report data of an analysis to monitor the age-related quantitative protein composition of the mitochondria of the fungal aging model Podospora anserina. The impact of senescence on mitochondrial protein composition was analyzed by LC-MS analysis. In an untargeted proteomic approach, we identified 795 proteins in samples from juvenile and senescent wild-type cultures and obtained quantitative information for 226 of these proteins by spectral counting. Despite the broad coverage of the proteome, no substantial changes linked to the aging process could be observed. LC-MS/MS-data were analyzed using the Sequest algorithm implemented in the Bioworks 3.3.1 software (Thermo scientific) for peptide identification versus a P. anserina protein database. As enzyme specificity Trypsin was selected. Two missed cleavages were permitted and the mass tolerance was set to 10 ppm. False discovery rates were estimated by the number of spectral matches to a decoy database. Acceptance criteria and filters were set to achieve a false positive rate of 5 %.