Project description:Base Editing has been touted the most intelligent and precise application of the CRISPR platform so far, merging the simplicity of RNA-guided nucleases with deaminases that allow for the programmable generation of single base substitutions - without introduction of double-strand breaks. Even though the two-component system has been expected to cause off-target substitutions, studies involving cytosine base editors (CBEs) showed that in most cases, relatively few single base off-targets could be detected on DNA. We introduce the concept of multi-dimensional off-targeting, presenting an extensive amount of RNA cytidines being edited by DNA base editors. Epitranscriptomic off-target effects affected different cell lines and were independent of the guide RNAs used, suggesting Cas9-independent activity of the cytidine deaminase rAPOBEC1 on single-stranded RNA. With the help of protein engineering, we developed CBE variants with massively reduced inadvertent mutation of RNA that preserve and enhance DNA base editing capabilities.
Project description:Base Editing has been touted the most intelligent and precise application of the CRISPR platform so far, merging the simplicity of RNA-guided nucleases with deaminases that allow for the programmable generation of single base substitutions - without introduction of double-strand breaks. Even though the two-component system has been expected to cause off-target substitutions, studies involving cytosine base editors (CBEs) showed that in most cases, relatively few single base off-targets could be detected on DNA. We introduce the concept of multi-dimensional off-targeting, presenting an extensive amount of RNA cytidines being edited by DNA base editors. Epitranscriptomic off-target effects affected different cell lines and were independent of the guide RNAs used, suggesting Cas9-independent activity of the cytidine deaminase rAPOBEC1 on single-stranded RNA. With the help of protein engineering, we developed CBE variants with massively reduced inadvertent mutation of RNA that preserve and enhance DNA base editing capabilities.
Project description:Base Editing has been touted the most intelligent and precise application of the CRISPR platform so far, merging the simplicity of RNA-guided nucleases with deaminases that allow for the programmable generation of single base substitutions - without introduction of double-strand breaks. Even though the two-component system has been expected to cause off-target substitutions, studies involving cytosine base editors (CBEs) showed that in most cases, relatively few single base off-targets could be detected on DNA. We introduce the concept of multi-dimensional off-targeting, presenting an extensive amount of RNA cytidines being edited by DNA base editors. Epitranscriptomic off-target effects affected different cell lines and were independent of the guide RNAs used, suggesting Cas9-independent activity of the cytidine deaminase rAPOBEC1 on single-stranded RNA. With the help of protein engineering, we developed CBE variants with massively reduced inadvertent mutation of RNA that preserve and enhance DNA base editing capabilities.
Project description:Base Editing has been touted the most intelligent and precise application of the CRISPR platform so far, merging the simplicity of RNA-guided nucleases with deaminases that allow for the programmable generation of single base substitutions - without introduction of double-strand breaks. Even though the two-component system has been expected to cause off-target substitutions, studies involving cytosine base editors (CBEs) showed that in most cases, relatively few single base off-targets could be detected on DNA. We introduce the concept of multi-dimensional off-targeting, presenting an extensive amount of RNA cytidines being edited by DNA base editors. Epitranscriptomic off-target effects affected different cell lines and were independent of the guide RNAs used, suggesting Cas9-independent activity of the cytidine deaminase rAPOBEC1 on single-stranded RNA. With the help of protein engineering, we developed CBE variants with massively reduced inadvertent mutation of RNA that preserve and enhance DNA base editing capabilities.
Project description:CRISPR-Cas9 delivery by AAV holds promise for gene therapy but faces critical barriers due to its potential immunogenicity and limited payload capacity. Here, we demonstrate genome engineering in postnatal mice using AAV-split-Cas9, a multi-functional platform customizable for genome-editing, transcriptional regulation, and other previously impracticable AAV-CRISPR-Cas9 applications. We identify crucial parameters that impact efficacy and clinical translation of our platform, including viral biodistribution, editing efficiencies in various organs, antigenicity, immunological reactions, and physiological outcomes. These results reveal that AAV-CRISPR-Cas9 evokes host responses with distinct cellular and molecular signatures, but unlike alternative delivery methods, does not induce detectable cellular damage in vivo. Our study provides a foundation for developing effective genome therapeutics mRNA-Seq from muscles (9 samples; 3 mice x 3 conditions) and lymph nodes (9 samples; 3 mice x 3 conditions).
Project description:Base editors are RNA-guided deaminases that enable site-specific nucleotide transitions. The targeting scope of these Cas-deaminase fusion proteins critically depends on the availability of a protospacer adjacent motif (PAM) at the selected genomic locus, and is limited to a window within the CRISPR-Cas R-loop where single stranded (ss)DNA is accessible to the deaminase. Here, we reason that the Cas9-HNH nuclease domain sterically constrains ssDNA accessibility, and demonstrate that omission of this domain expands the editing window. By exchanging the HNH nuclease domain with an adenosine deaminase, we furthermore engineer adenine base editor variants (HNHx-ABE) with PAM-proximally shifted editing windows. HNHx-ABEs are substantially reduced in size, and expand the targeting scope of base editors. Our finding that the HNH domain is replaceable could moreover benefit future protein engineering efforts, where Cas9 operates together with other enzyme domains.
Project description:Base editors are RNA-guided deaminases that enable site-specific nucleotide transitions. The targeting scope of these Cas-deaminase fusion proteins critically depends on the availability of a protospacer adjacent motif (PAM) at the selected genomic locus, and is limited to a window within the CRISPR-Cas R-loop where single stranded (ss)DNA is accessible to the deaminase. Here, we reason that the Cas9-HNH nuclease domain sterically constrains ssDNA accessibility, and demonstrate that omission of this domain expands the editing window. By exchanging the HNH nuclease domain with an adenosine deaminase, we furthermore engineer adenine base editor variants (HNHx-ABE) with PAM-proximally shifted editing windows. HNHx-ABEs are substantially reduced in size, and expand the targeting scope of base editors. Our finding that the HNH domain is replaceable could moreover benefit future protein engineering efforts, where Cas9 operates together with other enzyme domains.