Project description:Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments.
Project description:The vulnerable status of the Amazon manatee, Trichechus inunguis, indicates the need to seek measures to guarantee its conservation. In this context, the cultivation of cells in vitro is a strategy that should at least guarantee the preservation of their genetic material. Thus, we established for the first time a primary culture of Amazonian manatee fibroblasts (TINsf) from a skin biopsy of a young male. Karyotypic analysis of the 3rd, 7th, and 12th passages confirmed the taxonomic identity of the species T. inunguis (2n = 56/NF = 92) and indicated that this culture presents genomic stability. Gene and protein expression of vimentin at the 13th passage show the predominant presence of fibroblasts in TINsf. To test the cell line's responsiveness to materials and demonstrate a possible application of this culture, it was exposed to andiroba seed oil (ASO), and its viability and proliferative capacity were evaluated. ASO demonstrated toxic effects at the highest concentrations and longest exposure times tested, reproducing results observed in human cultures, indicating the applicability of TINsf in toxicological and biotechnological studies. After cryopreservation, the TINsf line maintained its proliferative potential, indicating the establishment of a new culture available for future studies.