Project description:We inflicted TBI to wildetype (wt) mice in order to establish whether the anti-inflammatory agent cyclophosphamide can be used therapeutically. Cyclophosphamide was found to regulate distinct inflammatory cells such as activated microglia separate from invading phagocytes and dendritic cells. Cyclophosphamide postinjury selectively reduces antigen-presenting dendritic cells. Findings show feasibility of drug development to interfere with brain inflammation.
Project description:We inflicted TBI to wildetype (wt) mice in order to establish whether the anti-inflammatory agent cyclophosphamide can be used therapeutically. Cyclophosphamide was found to regulate distinct inflammatory cells such as activated microglia separate from invading phagocytes and dendritic cells. Cyclophosphamide postinjury selectively reduces antigen-presenting dendritic cells. Findings show feasibility of drug development to interfere with brain inflammation. TBI was carried out in injured wt B6 mice for postinjury treatment with cyclophospamide i.p. using saline as a control substance for comparison with injured but untreated mice. Total RNA was prepared from injured cerebral neocortex after three days. RNA samples were also from uninjured wt mice as reference for hybridization on Affymetrix microarrays.
Project description:Apoptosis is a controlled cell-death process mediated inter alia by proteins of the Bcl-2 family. Some proteins previously shown to promote the apoptotic process were found to have non-apoptotic functions as well. Microglia, the resident immune cells of the central nervous system, respond to brain derangements by becoming activated to contend with the brain damage. Activated microglia can also undergo activation-induced cell death. Previous studies have addressed the role of core apoptotic proteins in the death process, but whether or not these proteins also play a role in the activation process has not been reported. Here we explore the effect of the BH3-only protein Bid on the immunological features of microglia by subjecting both WT and Bid deficient primary neonatal microglial cultures to LPS treatment (100 ng/ml, 3h) or left untreated (control) and analyzing their transcription profiles in order to study the role of Bid. 4 samples were analyzed. no replication.
Project description:To understand the mechanisms through which JunB regulates Tregs-mediated immune regulation, we examined the global gene expression profiles in the JunB WT and KO Tregs by performing RNA sequencing (RNA-seq) analysis.
Project description:Apoptosis is a controlled cell-death process mediated inter alia by proteins of the Bcl-2 family. Some proteins previously shown to promote the apoptotic process were found to have non-apoptotic functions as well. Microglia, the resident immune cells of the central nervous system, respond to brain derangements by becoming activated to contend with the brain damage. Activated microglia can also undergo activation-induced cell death. Previous studies have addressed the role of core apoptotic proteins in the death process, but whether or not these proteins also play a role in the activation process has not been reported. Here we explore the effect of the BH3-only protein Bid on the immunological features of microglia by subjecting both WT and Bid deficient primary neonatal microglial cultures to LPS treatment (100 ng/ml, 3h) or left untreated (control) and analyzing their transcription profiles in order to study the role of Bid.
Project description:We inflicted TBI to chemokine-deficient mouse lines in order to establish involvement of various signalling pathways that may be addressed therapeutically. Interacting chemokine pathways in brain regulate distinct inflammatory cells. Activated microglia are separate from invading phagocytes and dendritic cells. Findings show potential targets to interfere with specific inflammatory responses after brain injury.
Project description:We inflicted TBI to chemokine-deficient mouse lines in order to establish involvement of various signalling pathways that may be addressed therapeutically. Interacting chemokine pathways in brain regulate distinct inflammatory cells. Activated microglia are separate from invading phagocytes and dendritic cells. Findings show potential targets to interfere with specific inflammatory responses after brain injury. TBI was carried out in Ccl3-/- and Ccr2-/- mice, total RNA prepared from injured cerebral neocortex after three days. RNA samples were from uninjured Ccl3-/- and Ccr2-/- mice as reference for hybridization on Affymetrix microarrays.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:We use microarray analysis to compare the expression profiles of glioma-associated microglia/macrophages and naive control cells. Samples were generated from CD11b+ MACS-isolated cells from naïve and GL261-implanted C57BL/6 mouse brains.
Project description:Engrams are considered to be substrates for memory storage, and the functional dysregulation of the engrams leads to cognition impairment.However, the cellular basis for these maladaptive changes lead to the forgetting of memories remains unclear. Here we found that the expression of autophagy protein 7 (Atg7) mRNA was dramatically upregulated in aged DG engrams, and led to the forgetting of contextual fear memory and the activation of surrounding microglia.To determine mechanism by which autophagy in DG engrams activates the surrounding microglia, mice were co-injected AAV-RAM-Cre either with AAV-Dio-Atg7-Flag or AAV-Dio- EYFP in dorsal dentate gyrus to overexpress ATG7 in the DG memory engrams. Microglia were separated using magnetic-activated cell sorting and subjected to RNA-Seq in dorsal hippocampus .Bioinformatics analysis shown overexpression of Atg7 in dorsal DG memory engrams caused an increase in the expression of Tlr2 in the surrounding microglia.Depletion of Toll-like receptor 2/4 (TLR2/4) in DG microglia prohibited excessive microglial activation and synapse elimination induced by the overexpression of ATG7 in DG engrams, and thus prevented forgetting. Furthermore, the expression of Rac1, a Rho-GTPases which regulates active forgetting in both fly and mice, was upregulated in aged engrams. Optogentic activation of Rac1 in DG engrams promoted the autophagy of the engrams, the activation of microglia, and the forgetting of fear memory. Invention of the Atg7 expression and microglia activation attenuated forgetting induced by activation of Rac1 in DG engrams. Together, our findings revealed autophagy-dependent synapse elimination of DG engrams by microglia as a novel forgetting mechanism.