Project description:Mesenchymal stem cells (MSC) are multipotent cells which can be obtained from several adult and fetal tissues including human umbilical cord units. We have recently shown that umbilical cord tissue (UC) is richer in MSC than umbilical cord blood (UCB) but their origin and characteristics in blood as compared to the cord remains unknown. Here we compared, for the first time, the exonic protein-coding and intronic noncoding RNA (ncRNA) expression profiles of MSC from match-paired UC and UCB samples, harvested from the same donors, processed simultaneously and under the same culture conditions. The patterns of intronic ncRNA expression in MSC from UC and UCB paired units were highly similar, indicative of their common donor origin. The respective exonic protein-coding transcript expression profiles, however, were significantly different. Hierarchical clustering based on protein-coding expression similarities grouped MSC according to their tissue location rather than original donor. Genes related to systems development, osteogenesis and immune system were expressed at higher levels in UCB, whereas genes related to cell adhesion, morphogenesis, secretion, angiogenesis and neurogenesis were more expressed in UC cells. These molecular differences verified in tissue-specific MSC gene expression may reflect functional activities influenced by distinct niches and should be considered when developing clinical protocols involving MSC from different sources. In addition, these findings reinforce our previous suggestion on the importance of banking the whole umbilical cord unit for research or future therapeutic use.
Project description:screening of signature deterimes the individual variations in the therapeutic efficacy of human umbilical cord blood-derived mesenchymal stem cells There is paucity of information whether human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) from separate donors might have different effects on improving myocardial repair after myocardial infarction (MI).
Project description:Human umbilical cord mesenchymal stem cells maintained multipotency and immunosuppressive ability when being cultured in chemical defined serum free medium, but gained different gene expression profile. We used microarrays to identify the transcriptional difference between human umbilical cord mesenchymal stem cells cultured in serum containing medium and chemical defined serum free medium. human umbilical cord mesenchymal stem cells were cultured in conventional serum containing medium and chemical defined serum free medium separately. Total RNA was extracted and hybridized on Affymetrix microarrays.
Project description:Human umbilical cord mesenchymal stem cells maintained multipotency and immunosuppressive ability when being cultured in chemical defined serum free medium, but gained different gene expression profile. We used microarrays to identify the transcriptional difference between human umbilical cord mesenchymal stem cells cultured in serum containing medium and chemical defined serum free medium.
Project description:Umbilical cord blood banking is critical for the success of umbilical cord blood transplants. Here we analyzed transcriptomic differences between 27-year cryopreserved umbilical cord blood hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) and those derived from fresh cord blood. We also leveraged differences in engraftment capacity to examine the transcriptomes of HSCs/HPCs defined by engraftment capacity, demonstrating the feasibility of this approach for identifying potency markers to aid in the selection of cord blood units for transplantation and revealing novel potential regulators of cord blood HSC/HPC engraftment.
Project description:screening of signature deterimes the individual variations in the therapeutic efficacy of human umbilical cord blood-derived mesenchymal stem cells There is paucity of information whether human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) from separate donors might have different effects on improving myocardial repair after myocardial infarction (MI). We screened cell surface genes by the comparing the cells that showed the best and worst efficacy, respectively, in repairing the infarcted myocardium of rats.
Project description:We report that mesenchymal stem cells isolated from umbilical cord tissue differentiate more robustly into the myogenic lineage compared to mesenchymal stem cells from cord blood isolated from the same individual
Project description:Quantitative shotgun proteomic analysis (TMT) of the effect of inhibition of MIR21 in the EV protein cargo of human, Umbilical cord-derived Mesenchymal Stem Cells.
Project description:As an important part of regenerative medicine, human umbilical cord mesenchymal stem cells show a good clinical therapeutic effect, but their use is still limited. In recent years, the use of umbilical cord mesenchymal stem cell exosomes as cell replacement therapy can effectively overcome some defects of cell therapy. However, whether there are differences among different batches of exosomes, the specific mechanism of exosomes intervention is still poorly known. In this study, LC-MS/MS was used to identify the protein composition of two generations exosomes from three different donors, and the function and possible mechanism of exosome proteomic of human umbilical cord mesenchymal stem cells was analyzed by bioinformatics. It was found that the protein composition of human umbilical cord mesenchymal stem cell exosomes was basically the same in 6 groups, and 676 core proteins were found. The biological function of core proteomic was analyzed by GO, and it was found that core proteomic was involved in 88 molecular functions, such as anion binding, nucleotide binding, receptor binding, ribonucleotide binding; 648 biological processes, such as regulation of cellular process, macromolecule metabolic process, transport; 157 cellular components. The regulation pathway of core proteomic was analyzed by KEGG, and it was found that the regulation of blood coagulation, bacterial infection, phagocytosis, vesicle circulation and so on. Umbilical cord mesenchymal stem cell exosomes were used to interfere with APP/PS1 transgenic mice to explore the mechanism of exosome regulation of synaptic vesicle cycle signal pathway in Alzheimer's disease. The results showed that the exosomes could significantly enhance the spatial memory and learning ability, exercise ability and anti-fatigue ability of Alzheimer's disease model mice. Further analysis of mouse hippocampal proteome showed that the exosome proteomic of human umbilical cord mesenchymal stem cells was enriched into 9 proteins of synaptic vesicle cycle signal pathway. Compared with control group and exosome group, the contents of AP2A1 and AP2B1 in hippocampus of model group were significantly decreased. The results of this study can provide research methods and theoretical basis for the use of human umbilical cord mesenchymal stem cell exosomes to treat diseases, and further promote its clinical application.