Project description:Ulcerative colitis is a chronic inflammatory disorder for which a definitive cure is still missing. This is characterized by an overwhelming inflammatory milieu in the colonic tract where a composite set of immune and non-immune cells orchestrate its pathogenesis. Over the last years, a growing body of evidence has been pinpointing gut virome dysbiosis as underlying its progression. Nonetheless, its role during the early phases of chronic inflammation is far from being fully defined. Here we show the gut virome-associated Hepatitis B virus protein X, most likely acquired after an event of zoonotic spillover, to be associated with the early stages of ulcerative colitis and to induce colonic inflammation in mice. It acts as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering mucosal immunity at the level of both innate and adaptive immunity. This study paves the way to the comprehension of the aetiopathogenesis of intestinal inflammation and encourages further investigations of the virome as a trigger also in other scenarios. Moreover, it provides a brand-new standpoint that looks at the virome as a target for tailored treatments, blocking the early phases of chronic inflammation and possibly leading to better disease management.
2023-02-20 | GSE204665 | GEO
Project description:The plasma virome of febrile adult Kenyans
| PRJNA343480 | ENA
Project description:Plasma virome in multiple blood transfused patients
Project description:Primary outcome(s): The detection rates of epigenetic heterogeneity in primary tumor and plasma from colorectal cancer patients with Methylation-sensitive high resolution melt(MS-HRM).
Project description:B cells encounter antigen to activate and then differentiate into plasma cells. Both multiple myeloma (MM) and some autoimmune diseases such as multiple sclerosis (MS) and systemic lupus erythematosus (SLE) are characterized with abnormal production of plasma cells. In both diseases, the process of B cells differentiate into plasma cell is disordered. To explore the novel therapeutic target to the process from naïve B cells to plasma cells via activated B cells, we determined the gene expression profile in activated B cells by affymetrix microarrays. Splenic activated CD5+B cells were sorted from 7-9-week female C57BL/6 mice by FACS and from EAE (MOG-induced chronic experimental allergic encephalomyelitis (EAE) in C57BL/6 mice is an animal model for MS) by CD19 microbeads, respectively. The transcripts in B cells were determined by Affymetrix Microarrays.
Project description:Purpose: We generated extensive transcriptional and proteomic profiles from a Her2-driven mouse model of breast cancer that closely recapitulates human breast cancer. This report makes these data publicly available in raw and processed forms, as a resource to the community. Importantly, we previously made biospecimens from this same mouse model freely available through a sample repository, so researchers can obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens. Experimental design: Twelve datasets are available, encompassing 841 LC-MS/MS experiments (plasma and tissues) and 255 microarray analyses of multiple tissues (thymus, spleen, liver, blood cells, and breast). Cases and controls were rigorously paired to avoid bias. Results: In total, 18,880 unique peptides were identified (PeptideProphet peptide error rate ≤1%), with 3884 and 1659 non-redundant protein groups identified in plasma and tissue datasets, respectively. Sixty-one of these protein groups overlapped between cancer plasma and cancer tissue. Conclusions and clinical relevance: These data are of use for advancing our understanding of cancer biology, for software and quality control tool development, investigations of analytical variation in MS/MS data, and selection of proteotypic peptides for MRM-MS. The availability of these datasets will contribute positively to clinical proteomics.
Project description:Purpose: We generated extensive transcriptional and proteomic profiles from a Her2-driven mouse model of breast cancer that closely recapitulates human breast cancer. This report makes these data publicly available in raw and processed forms, as a resource to the community. Importantly, we previously made biospecimens from this same mouse model freely available through a sample repository, so researchers can obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens. Experimental design: Twelve datasets are available, encompassing 841 LC-MS/MS experiments (plasma and tissues) and 255 microarray analyses of multiple tissues (thymus, spleen, liver, blood cells, and breast). Cases and controls were rigorously paired to avoid bias. Results: In total, 18,880 unique peptides were identified (PeptideProphet peptide error rate ≤1%), with 3884 and 1659 non-redundant protein groups identified in plasma and tissue datasets, respectively. Sixty-one of these protein groups overlapped between cancer plasma and cancer tissue. Conclusions and clinical relevance: These data are of use for advancing our understanding of cancer biology, for software and quality control tool development, investigations of analytical variation in MS/MS data, and selection of proteotypic peptides for MRM-MS. The availability of these datasets will contribute positively to clinical proteomics.