Project description:Developmental gene expression is defined through cross-talk between the function of transcription factors and epigenetic status including histone modification. Although several known transcription factors play crucial roles in mammalian sex determination, how chromatin regulation contributes to this process is unknown. We observed male-to-female sex reversal in mice lacking the H3K9 demethylase Jmjd1a, and found that Jmjd1a directly regulates expression of the mammalian Y chromosome sex-determining gene Sry, by regulating H3K9me2 marks. These studies reveal a pivotal role for epigenetic regulation in mammalian sex determination, and provide new impetus for identifying additional causes of disorders of sex determination by environmental factors. Gene expression patterns were measured in gonadal somatic cells of Jmjd1a mutant and control embryos at E11.5. Three biological replicates were performed in each group.
Project description:Mammalian gonadal sex determination is dependent on proper expression of sex determining genes in fetal gonadal somatic support cells (i.e., pre-granulosa and pre-Sertoli cells in XX and XY gonads, resp.). We used a unique transgenic mouse strain combined with microarray profiling to identify all the differentially expressed transcripts in XX and XY isolated somatic support cells during critical stages of gonadal development and differentiation.
Project description:A critical transcription factor required for mammalian male sex determination is SRY (sex determining region on the Y chromosome). The expression of SRY in precursor Sertoli cells is one of the initial events in testis development. The current study was designed to determine the impact of environmentally induced epigenetic transgenerational inheritance on SRY during gonadal sex determination in the male. The agricultural fungicide vinclozolin and vehicle control (DMSO) exposed gestating females (F0 generation) during gonadal sex determination promoted the transgenerational inheritance of differential DNA methylation in sperm of the F3 generation (great grand-offspring). The fetal gonads in F3 generation males were used to identify potential alterations in SRY binding sites in the developing Sertoli cells. Chromatin immunoprecipitation with an SRY antibody followed by genome-wide promoter tiling array (ChIP-Chip) was used to identify alterations in SRY binding. A total of 81 adjacent oligonucleotide sites and 173 single oligo SRY binding sites were identified to be altered transgenerationally in the Sertoli cell vinclozolin lineage F3 generation males. Observations demonstrate the majority of the previously identified normal SRY binding sites were not altered and the altered SRY binding sites were novel and new additional sites. The chromosomal locations, gene associations and potentially modified cellular pathways were investigated. In summary, environmentally induces epigenetic transgenerational inheritance of germline epimutations appears to alter the cellular differentiation and development of the precursor Sertoli cell SRY binding during gonadal sex determination that influence the developmental origins of adult onset testis disease.
Project description:Gonadal sex determining (GSD) genes that initiate fetal ovarian and testicular development and differentiation are expressed in the cells of the urogenital ridge that differentiate as somatic support cells (SSCs), i.e., granulosa cells of the ovary and Sertoli cells of the testis. To identify potential new mammalian GSD genes, we analyzed the gene expression differences between XX and XY SSCs cells isolated from the gonads of embryonic day (E) 13 mouse fetuses carrying an EGFP reporter transgene expressed specifically in SSCs. In addition, genome wide expression differences between XX and XY E13 whole gonads were examined. Newly identified differentially expressed transcripts are potential GSD genes involved in unexplained human sex reversal cases. Keywords: microarray, mouse fetal gonadal somatic support cells, sex determination
Project description:Mammalian gonadal sex determination is dependent on proper expression of sex determining genes in fetal gonadal somatic support cells (i.e., pre-granulosa and pre-Sertoli cells in XX and XY gonads, resp.). We used a unique transgenic mouse strain combined with microarray profiling to identify all the differentially expressed transcripts in XX and XY isolated somatic support cells during critical stages of gonadal development and differentiation. Experiment Overall Design: XX and XY somatic support cells (SSC) were isolated by flow cytometry from embryonic day (E) 11.5 and E12.5 mouse gonads. Total RNA was isolated from pools of isolated cells; 3 pools per sex and each timepoint.
Project description:Embryonic day 13 (E13), E14, and E16 rat testes and ovaries were used for microarray analysis, as well as E13 testis organ cultures that undergo testis morphogenesis and develop seminiferous cords in vitro. A list of 109 genes resulted from a selective analysis for genes present in male gonadal development and with a 1.5-fold change in expression between E13 and E16. Characterization of these 109 genes potentially important for testis development revealed that cytoskeletal-associated proteins, extracellular matrix factors, and signaling factors were highly represented. Throughout the developmental period (E13-E16), sex-enriched transcripts were more prevalent in the male with 34 of the 109 genes having testis-enriched expression during sex determination. In ovaries, the total number of transcripts with a 1.5-fold change in expression between E13 and E16 was similar to the testis, but none of those genes were both ovary enriched and regulated during the developmental period. Genes conserved in sex determination were identified by comparing changing transcripts in the rat analysis herein, to transcripts altered in previously published mouse studies of gonadal sex determination. A comparison of changing mouse and rat transcripts identified 43 genes with species conservation in sex determination and testis development. Profiles of gene expression during E13-E16 rat testis and ovary development are presented and candidate genes for involvement in sex determination and testis differentiation are identified. Analysis of cellular pathways did not reveal any specific pathways involving multiple candidate genes. However, the genes and gene network identified influence numerous cellular processes with cellular differentiation, proliferation, focal contact, RNA localization, and development being predominant. Keywords: expression analysis, testis, ovary, sex determination
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Purpose: In this study we employed unbiased, genome-wide techniques to identify regulatory elements during murine sex determination. Methods: We performed ATAC-seq on 60K FACS-purified XX and XY gonadal cells before and after sex determination to map nucleosome depleted regions (NDRs) indicative of regulatory elements. To determine whether these are active enhancers, we performed ChIP-seq for H3K27ac, a histone modification that marks active enhancers in both sexes and time points. Transient transgenics was performed on select enhancers to determine whether they are functional in gonads during the sex determination stage. Results: We have produced a genome wide map of potential regulatory elements and active enhancers during the process of murine sex determination. Furthermore, we validated the power of our dataset by identifying a novel enhancer downstream of Bmp2, a female-specific gene. Conclusions: This work supplies a powerful resource for identifying chromatin regulatory elements active during mammalian sex determination.
Project description:Developmental gene expression is defined through cross-talk between the function of transcription factors and epigenetic status including histone modification. Although several known transcription factors play crucial roles in mammalian sex determination, how chromatin regulation contributes to this process is unknown. We observed male-to-female sex reversal in mice lacking the H3K9 demethylase Jmjd1a, and found that Jmjd1a directly regulates expression of the mammalian Y chromosome sex-determining gene Sry, by regulating H3K9me2 marks. These studies reveal a pivotal role for epigenetic regulation in mammalian sex determination, and provide new impetus for identifying additional causes of disorders of sex determination by environmental factors.