Project description:Ex vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases. Gene editing encompasses delivery of a programmable editor RNA or ribonucleoprotein, often achieved ex vivo by electroporation and, when aiming to homology-driven correction, of a DNA template often provided by viral vectors together with a nuclease editor. Whereas HSPCs activate robust p53-dependent DNA damage response (DDR) upon nuclease-based editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multi-omics analyses and found that electroporation is the main culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism and inducing inflammatory response. Nuclease RNA delivery by lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding higher number of edited cells compared to electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher clonogenic activity and similar or higher reconstitution by long-term repopulating HSPCs compared to electroporation, reaching comparable editing efficiencies. Overall, LNPs may allow efficient and harmless ex vivo gene editing in hematopoietic cells for treatment of human diseases.
Project description:Ex vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases. Gene editing encompasses delivery of a programmable editor RNA or ribonucleoprotein, often achieved ex vivo by electroporation and, when aiming to homology-driven correction, of a DNA template often provided by viral vectors together with a nuclease editor. Whereas HSPCs activate robust p53-dependent DNA damage response (DDR) upon nuclease-based editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multi-omics analyses and found that electroporation is the main culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism and inducing inflammatory response. Nuclease RNA delivery by lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding higher number of edited cells compared to electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher clonogenic activity and similar or higher reconstitution by long-term repopulating HSPCs compared to electroporation, reaching comparable editing efficiencies. Overall, LNPs may allow efficient and harmless ex vivo gene editing in hematopoietic cells for treatment of human diseases.
Project description:Ex vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases. Gene editing encompasses delivery of a programmable editor RNA or ribonucleoprotein, often achieved ex vivo by electroporation and, when aiming to homology-driven correction, of a DNA template often provided by viral vectors together with a nuclease editor. Whereas HSPCs activate robust p53-dependent DNA damage response (DDR) upon nuclease-based editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multi-omics analyses and found that electroporation is the main culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism and inducing inflammatory response. Nuclease RNA delivery by lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding higher number of edited cells compared to electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher clonogenic activity and similar or higher reconstitution by long-term repopulating HSPCs compared to electroporation, reaching comparable editing efficiencies. Overall, LNPs may allow efficient and harmless ex vivo gene editing in hematopoietic cells for treatment of human diseases.
Project description:We present a strategy to investigate regulatory elements that leverages programmable reagents to selectively inactivate their endogenous chromatin state. The reagents, which comprise fusions between transcription activator- like effector (TALE) repeat domains and the LSD1 histone demethylase, efficiently remove enhancer-associated chromatin modifications from target loci, without affecting control regions. We find that inactivation of enhancer chromatin by these fusions frequently causes down- regulation of proximal genes. Our study demonstrates the potential of 'epigenome editing' tools to characterize a critical class of functional genomic elements. ChIP-seq analysis of TALE-Fusion Proteins
Project description:CRISPR-based epigenome editing was recently used to activate gene expression through direct transcriptional activation or site-specific DNA demethylation. Viral delivery of guide RNAs for these purposes remains to be developed. Furthermore, currently available viral delivery tools for genome editing show meager rates of heritability. Here, we have developed a tobacco rattle virus (TRV)-based guide RNA delivery system for both transcriptional activation and targeted DNA demethylation. To promote heritable epigenome editing specifically within plant meristems and the germline, we used the tRNA-guide RNA expression system to express guide RNAs from the viral genome, thus facilitating cell-to-cell movement of the RNA in plants. We achieved up to ~8% heritability of the induced phenotype in the progeny of virus-inoculated plants and 25% in the following generation, indicating high rates of heritability for targeted DNA demethylation. Thus, TRV delivery, in combination with a specific tRNA-gRNA architecture, provides for fast and effective epigenome editing.
Project description:Adenine and cytosine base editors (ABEs and CBEs) represent a new genome editing technology that allows the programmable installation of A-to-G or C-to-T alterations on DNA. We engineered Streptococcus pyogenes Cas9-based adenine and cytosine base editor (SpACE) that enables efficient simultaneous introduction of A-to-G and C-to-T substitutions in the same base editing window on DNA.
Project description:Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Using engineered murine leukemia virus-like particles loaded with Cas9/sgRNA ribonucleoproteins (“Nanoblades”), we were able to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades were also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.
Project description:Viruses and virally-derived particles have the intrinsic capacity to deliver molecules to cells, but the difficulty of readily altering cell-type selectivity has hindered their use for therapeutic delivery. Here we show that cell surface marker recognition by antibody fragments displayed on membrane-derived particles encapsulating CRISPR-Cas9 protein and guide RNA can target genome editing tools to specific cells. These Cas9-packaging enveloped delivery vehicles (Cas9-EDVs), programmed with different displayed antibody fragments, confer genome editing in target cells over bystander cells in mixed cell populations both ex vivo and in vivo. This strategy enabled the generation of genome-edited chimeric antigen receptor (CAR) T cells in humanized mice, establishing a new programmable delivery modality with the potential for widespread therapeutic utility.
Project description:Techniques for exclusion of exons from mature transcripts have been applied as gene therapies for treating many different diseases. Since exon skipping has been traditionally accomplished using technologies that have a transient effect, it is particularly important to develop new techniques that enable permanent exon skipping. We have recently demonstrated that this can be accomplished using cytidine base editors for permanently disabling the splice acceptor of target exons. We now demonstrate the application of adenine-deaminase base editors to disrupt the conserved adenosine within splice acceptor sites for programmable exon skipping. We also demonstrate that by altering the amino acid sequence of the linker between the adenosine deaminase domain and the Cas9 nickase or by coupling the adenine base editor with a uracil glycosylase inhibitor, the DNA editing efficiency and exon skipping rates improve significantly. Finally, we developed a split base editor architecture compatible with adeno-associated viral packaging. Collectively, these results represent significant progress towards permanent in vivo exon skipping through base editing and, ultimately, a new modality of gene therapy for the treatment of genetic diseases.