Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:Oryza sativa L. Japonica nipponbare seedlings were treated with 300mM NaCl or water, and then samples were taken after one hour, five hours and 24 hours, to assess which genes are differentially expressed over time during salt stress treatment. The results from this dataset are also compared with those from the same samples assayed using RNA-seq.
Project description:Oryza sativa L. Japonica nipponbare seedlings were treated with 300mM NaCl or water, and then samples were taken after one hour, five hours and 24 hours, to assess which genes are differentially expressed over time during salt stress treatment. The results from this dataset are also compared with those from the same samples assayed using RNA-seq.
Project description:In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana, ecotype Columbia-0) to a crop, rice (Oryza sativa spp. japonica (Nipponbare)), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants.