Project description:Although the relationship between phenotypic plasticity and evolutionary dynamics has attracted large interest, very little is known about the contribution of phenotypic plasticity to adaptive evolution. In this study, we analyzed phenotypic and genotypic changes in E. coli cells during adaptive evolution to ethanol stress. To quantify the phenotypic changes, transcriptome analyses were performed.
Project description:Although the relationship between phenotypic plasticity and evolutionary dynamics has attracted large interest, very little is known about the contribution of phenotypic plasticity to adaptive evolution. In this study, we analyzed phenotypic and genotypic changes in E. coli cells during adaptive evolution to ethanol stress. To quantify the phenotypic changes, transcriptome analyses were performed. We previously obtained 6 independently evolved ethanol tolerant E. coli strains, strains A through F, by culturing cells under 5% ethanol stress for about 1000 generations and found a significantly larger growth rate than the parent strains (Horinouchi et al, 2010, PMID: 20955615). To elucidate the phenotypic changes that occurred during adaptive evolution, we quantified the time-series of the expression changes by microarray analysis. Starting from frozen stocks obtained at 6 time points (0, 384, 744, 1224, 1824 and 2496 hours) in laboratory evolution, cells were cultured under 5% ethanol stress, and mRNA samples were obtained in the exponential growth phase for microarray analysis.
Project description:The interplay between phenotypic plasticity and adaptive evolution has long been an important topic of evolutionary biology. This process is critical to our understanding of a species evolutionary potential in light of rapid climate changes. Despite recent theoretical work, empirical studies of natural populations, especially in marine invertebrates, are scarce. In this study, we investigated the relationship between adaptive divergence and plasticity by integrating genetic and phenotypic variation in Pacific oysters from its natural range in China. Genome resequencing of 371 oysters revealed unexpected fine-scale genetic structure that is largely consistent with phenotypic divergence in growth, physiology, thermal tolerance and gene expression across environmental gradient. These findings suggest that selection and local adaptation are pervasive and together with limited gene flow shape adaptive divergence. Plasticity in gene expression is positively correlated with evolved divergence, indicating that plasticity is adaptive and likely favored by selection in organisms facing dynamic environments such as oysters. Divergence in heat response and tolerance implies that the evolutionary potential to a warming climate differs among oyster populations. We suggest that trade-offs in energy allocation are important to adaptive divergence with acetylation playing a role in energy depression under thermal stress.
Project description:Traditionally, the study of evolution has focused on heritable variation, because selection on non-heritable phenotypic variation was deemed non-important for its inability to cause evolutionary responses such as diversification of lineages. Recently however, it has been suggested that also environmentally induced phenotypic variation such as phenotypic plasticity can play an important role in adaptive responses resulting in diversification. The purpose of this study is to investigate the importance of phenotypic plasticity for the diversification of lineages, using life history, morphological traits, and genomic profiling during post embryonic development in plastic and non-plastic genotypes of the common frog Rana temporaria. Six animals each originating from four different islands were reared in either constant or reduced water conditions and hepatic mRNA levels of Gosner stage 37 animals evaluated by MAGEX DNA array analysis.
Project description:Traditionally, the study of evolution has focused on heritable variation, because selection on non-heritable phenotypic variation was deemed non-important for its inability to cause evolutionary responses such as diversification of lineages. Recently however, it has been suggested that also environmentally induced phenotypic variation such as phenotypic plasticity can play an important role in adaptive responses resulting in diversification. The purpose of this study is to investigate the importance of phenotypic plasticity for the diversification of lineages, using life history, morphological traits, and genomic profiling during post embryonic development in plastic and non-plastic genotypes of the common frog Rana temporaria.
Project description:Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a non-stressful environment, ancestral populations were highly sensitive to a 36.8°C heat shock and exhibited high mortality. However, initial exposure to a non-lethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the non-inducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity. mRNA profiles of ancestral and two experimentally evolved populations of C. remanei at 20°C or 30°C, 6 replicates/temperature for each population
Project description:Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a non-stressful environment, ancestral populations were highly sensitive to a 36.8°C heat shock and exhibited high mortality. However, initial exposure to a non-lethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the non-inducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.
Project description:Helicobacter pylori has a very plastic genome, reflecting its high rate of recombination and point mutation. This plasticity promotes divergence of the population by the development of subclones and presumably enhances adaptation to host niches. We have investigated the genotypic and phenotypic characteristics of two such subclones isolated from one patient as well as the genetic evolution of these isolates during experimental infection. Whole-genome genotyping of the isolates using DNA microarrays revealed that they were more similar to each other than to a panel of other genotyped strains recovered from different hosts. Nonetheless, they still showed significant differences. The genomic evolution of both isolates during the infection of conventionally raised and germ-free mice was monitored over the course of 3 months. The Cag PAI-positive isolate was also surveyed after a 10 month colonization of conventionally raised transgenic animals (n = 9 mice). Microarray analysis of the Cag PAI and sequence analysis of the cagA, recA, and 16S rRNA genes disclosed no changes in recovered isolates. Together, these results reveal that the H. pylori population infecting one individual can undergo significant divergence, creating stable subclones with substantial genotypic and phenotypic differences. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Computed
Project description:Temperature profoundly affects biological systems across all levels of organization. Over generations, species become evolutionarily adapted to specific thermal environments. In addition to evolved adaptive differences, individuals may reversibly modify their phenotype within their lifetimes in response to different thermal environments in a process termed phenotypic plasticity. The interaction between, evolutionary adaptation and phenotypic plasticity is complex and contentious. We utilize Fundulus glycolytic muscle physiology to address this interaction. We conducted a microarray analysis of muscle gene expression using three populations of Fundulus acclimated to three different temperatures. A phylogenetic comparative analysis among populations from different thermal environments demonstrates adaptive variation in mRNA expression for 186 genes. Sixty-seven genes had significant differences in mRNA expression in response to thermal acclimation. Interestingly, evolutionary adaptation and phenotypic plasticity appear to operate primarily orthogonally: few genes (although more than expected by chance alone) exhibit both adaptive variation and phenotypic plasticity. The magnitude and function of the adaptive variation in gene expression is dependent on acclimation temperature (e.g., more genes have adaptive differences at 12° and 28°C than at 20°C), demonstrating the importance of gene-by-environment interactions. Finally, a functional analysis of gene expression provides novel, testable hypotheses regarding adaptation of muscle physiology.