Project description:The induction of genes in response to exposure of T. reesei to wheat straw was explored using genome-wide RNA-seq and compared to published RNA-seq data and model of how A. niger senses and responds to the lignocellulose. After 24 h of exposure to straw, transcript levels of known and predicted lignocellulose-degrading enzymes increased to around 8% of total cellular mRNA in T. reesei, which was much less when compared to A. niger. The bulk of enzymes used to deconstruct wheat straw is similar in both fungi. Other, non-plant cell wall-degrading enzymes which may aid in lignocellulose degradation were also uncovered in T. reesei and similar to those described in A. niger. Antisense transcripts were also shown to be present in T. reesei and their expession can be regulated by the respective growth condition. Triplicate samples of T. reesei cultivated in each of the three following conditions were taken: 1) After 48 h growth in glucose-based minimal media; 2) After transfer of mycelia from glucose-based media into media containing wheat straw as a sole carbon source and 3) 5 h after addition of glucose to straw cultures.
Project description:The induction of genes in response to exposure of T. reesei to wheat straw was explored using genome-wide RNA-seq and compared to published RNA-seq data and model of how A. niger senses and responds to the lignocellulose. After 24 h of exposure to straw, transcript levels of known and predicted lignocellulose-degrading enzymes increased to around 8% of total cellular mRNA in T. reesei, which was much less when compared to A. niger. The bulk of enzymes used to deconstruct wheat straw is similar in both fungi. Other, non-plant cell wall-degrading enzymes which may aid in lignocellulose degradation were also uncovered in T. reesei and similar to those described in A. niger. Antisense transcripts were also shown to be present in T. reesei and their expession can be regulated by the respective growth condition.
2013-04-01 | GSE44648 | GEO
Project description:microbial diversity on cow manure composting
Project description:Various saprotrophic microorganisms, especially filamentous fungi, can efficiently degrade lignocellulose that is one of the most abundant natural material on earth. It consists of complex carbohydrates and aromatic polymers found in plant cell wall and thus in plant debris. Aspergillus fumigatus Z5 was isolated from compost heaps and showed highly efficient plant biomass-degradation capability.Genome analysis revealed an impressive array of genes encoding cellulases, hemicellulases, and pectinases involved in lignocellulosic biomass degradation. We sequenced the transcriptomes of Aspergillus fumigatus Z5 induced by sucrose, xylan, cellulose and rice straw, respectively. There were 444, 1711 and 1386 significantly differently (q-value ⤠0.0001 and |log2 of the ratio of the RPM values| ⥠2) expressed genes in xylan, cellulose and rice straw,respectively, relative to sucrose control. After incubation at 45 â, 145rpm for 20 hours with sucrose as the carbon source, mycelia were induced for 16 hours using xylan, cellulose and rice straw, respectively. Transcriptome induced by sucrose was used as the control when comparing the differences between other three transcriptomes (induced by xylan, cellulose and rice straw, respectively).
Project description:Various saprotrophic microorganisms, especially filamentous fungi, can efficiently degrade lignocellulose that is one of the most abundant natural material on earth. It consists of complex carbohydrates and aromatic polymers found in plant cell wall and thus in plant debris. Aspergillus fumigatus Z5 was isolated from compost heaps and showed highly efficient plant biomass-degradation capability.Genome analysis revealed an impressive array of genes encoding cellulases, hemicellulases, and pectinases involved in lignocellulosic biomass degradation. We sequenced the transcriptomes of Aspergillus fumigatus Z5 induced by sucrose, xylan, cellulose and rice straw, respectively. There were 444, 1711 and 1386 significantly differently (q-value ≤ 0.0001 and |log2 of the ratio of the RPM values| ≥ 2) expressed genes in xylan, cellulose and rice straw,respectively, relative to sucrose control.
2015-11-22 | GSE55086 | GEO
Project description:Succession and Response of microbial communities to Environmental Variables During Cow Manure and Straw/Sawdust Composting
Project description:The thermophilic filamentous fungi Myceliophthora thermophila (Sporotrichum thermophile) and Thielavia terrestris are proficient decomposers of cellulose, suggesting that they will be a rich source of thermostable industrial enzymes for lignocellulose degradation. To identify the genes and proteins involved in this process, we explored the transcriptomes of M. thermophila and T. terrestris growing at 45 ºC on either glucose, alfalfa, or barley straw by short-read sequencing of extracted mRNA. To better understand the adaptations that allow these fungi to grow at elevated temperatures, we compared their transcriptomes when growing at 34C to their transcritomes at 45C, and also to the transcriptome of the related fungus Chaetomium globosum, which does not grow at 45C. RNA was extracted from cultures in early growth stage growing with glucose, alfalfa, or barley straw as carbon source at 34C or 45C (M. thermophila and T. terrestris); duplicate cultures were sampled in some conditions.