Project description:In order to investigate what differences exist in the aroma-regulated genes of grape varieties with different aromas, we established different aromatic grape varieties at the ripening stage and looked for the differential genes and their expression.
Project description:Noble rot results from atypical infections of ripe grape berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and accumulation of secondary metabolites that enhance wine grape quality. Noble rot-infected berries of Sémillon, a white-skinned variety, were collected over three years from a commercial vineyard at the same time fruit were harvested for botrytized wine production. Transcriptomic and metabolomic data were integrated to identify pathways associated with distinct stages of noble rot. Botrytis induced the expression of known key regulators of pathways in secondary metabolism associated with berry ripening. The activation by Botrytis during noble rot of metabolic pathways associated with berry ripening was further supported by comparisons with transcriptomes of red-skinned varieties at véraison. A prominent and common outcome of noble rot and berry ripening was the enhancement of the phenylpropanoid metabolism. Induced synthesis of stilbenes, flavonoids, and anthocyanins was supported by both transcriptional and metabolite analyses. Enzyme assays and targeted gene expression analyses of samples from the three distinct years confirmed that the activation of central and peripheral phenylpropanoid pathways is a consistent hallmark of noble rot. Finally, we show that the impact of noble rot on grape metabolism is still detectable in botrytized wines. These results demonstrate that despite the late stage of terminal senescence of a plant organ, a biotic stress can cause a major reprogramming of plant metabolism leading, in case of noble rot, to the synthesis of important metabolites for grape berry flavor and aroma.
Project description:Natural grape-juice fermentations involve the sequential development of different yeast species which strongly influence the chemical and sensorial traits of the final product. In the present study,we aimed to examine the transcriptomic response of Saccharomyces cerevisiae to the presence of Hanseniaspora guilliermondii wine fermentation.
Project description:iTRAQ proteomics analysis in roots of wine grape (Beida) during overwintering have been revealed that low temperature induced differentially proteins accumulated.
Project description:iTRAQ proteomics analysis in roots of wine grape (Beida) during overwintering have been revealed that low temperature induced differentially proteins accumulated.
Project description:In this work, we used a functional gene microarray approach (GeoChip) to assess the soil microbial community functional potential related to the different wine quality. In order to minimize the soil variability, this work was conducted at a “within-vineyard” scale, comparing two similar soils (BRO11 and BRO12) previously identified with respect to pedological and hydrological properties within a single vineyard in Central Tuscany and that yielded highly contrasting wine quality upon cultivation of the same Sangiovese cultivar
Project description:Natural grape-juice fermentations involve the sequential development of different yeast species which strongly influence the chemical and sensorial traits of the final product. In the present study,we aimed to examine the transcriptomic response of Saccharomyces cerevisiae to the presence of Hanseniaspora guilliermondii wine fermentation. Paralell fermentations were carried out in natural grape-juice using S. cerevisiae for both single and mixed culture with a H. guilliermondii strain. For RNA extraction, cells were collected at 24h, 48h and 96 h from both fermentations
Project description:The aim of this study was to measure the influence of beverages on blood gene expression. We wanted to explore the underlying mechanisms of the cardioprotective effects of red wine. Experiment Overall Design: Six healthy volunteers participated in this randomized controlled cross-over experiment. On 4 independent days they had 4 different beverages (500mL each: grape juice, red wine, 40g diluted ethanol, water). Blood samples were taken at baseline, 1, 2, 4, 12 hours after the drink together with standardized nutrition. RNA of 120 PBL samples was hybridized on Affymetrix microarrays. Three sources of variations were examined: individual, time and beverage.