Project description:Enteroendocrine cells (EECs) are the source of a variety of gut hormones that control local intestinal functions such as gallbladder contraction, pancreatic enzyme secretion and intestinal motility, as well as peripheral nutrient metabolism and appetite. This study aimed to map human EECs isolated from organoids derived from duodenum and ileum using single-cell RNA sequencing.
Project description:We generated knock-in mice expressing GFP under the control of the endogenous GIP (Glucose-dependent Insulinotropic Polypeptide) promoter that enable the isolation of a purified population of small intestine K cells. Using RNA-Seq, we comprehensively characterized the transcriptomes of GIP-GFP cells as well as the entire enteroendocrine lineage derived from Neurogenin3 (Ngn3)-expressing progenitors. We interrogated the whole transcriptome of FACS-isolated small intestine GIPGFP cells using high-throughput mRNA sequencing. We also obtained the global gene expression patterns of the entire enteroendocrine cell lineage as well as the non-enteroendocrine cell population, comprising enterocytes, goblet cells and Paneth cells. To achieve this, small intestine epithelial cells from male mice resulting from the breeding of Neurogenin3 (Ngn3)-Cre mice with ROSA26-LoxP-STOP-LoxP-tomato indicator mice were isolated based on Tomato fluorescence and negative staining for CD45. Due to the small cell numbers, we constructed each of the three RNA-Seq libraries (GIPGFP, Ngn3TOMATO, and Ngn3-) using a pool of equal amounts of individual RNA samples without RNA amplification.
Project description:We generated knock-in mice expressing GFP under the control of the endogenous GIP (Glucose-dependent Insulinotropic Polypeptide) promoter that enable the isolation of a purified population of small intestine K cells. Using RNA-Seq, we comprehensively characterized the transcriptomes of GIP-GFP cells as well as the entire enteroendocrine lineage derived from Neurogenin3 (Ngn3)-expressing progenitors.
Project description:The intestine is composed of an epithelial layer, containing rapidly proliferating cells that mature into two distinct anatomic regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for the whole intestine, no studies have compared stem cells derived from the small and large intestine. Here, we report intrinsic differences between these two populations of cells. Primary epithelial cells isolated from human fetal small and large intestine and expanded with Wnt agonist, R-spondin 2, displayed differential expression of stem cell markers and separate hierarchical clustering of gene expression involved in differentiation, proliferation and disease pathways. Using a three-dimensional in vitro differentiation assay, single cells derived from small and large intestine formed distinct organoid architecture with cellular hierarchy similar to that found in primary tissue. Our characterization of human fetal intestinal stem cells defies the classical definition proposed by most where small and large intestine are repopulated by an identical epithelial stem cell and raises the question of the importance of intrinsic and extrinsic cues in the development of intestinal diseases. 12 samples were analyzed. They consisted of human fetal small and large intestine (SI; n=6 and LI; n=6) stem cells, expanded with Wnt agonist and R-spondin 2. Differential expression of genes in epithelial cells from both the large and small intestine were observed.
Project description:A human organoid culture system was set up to grow enteroendocrine cells with a venus labeled on the glucagon gene promoter sequence. This enabled the sorting of glucagon gene positive cells from negative cells, thereby enabling the enrichment of glucagon producing cells for study. Both Venus positive and venus negative cell populations were collected and their peptidome was assessed using nano LC-MS/MS
Project description:The intestine is composed of an epithelial layer, containing rapidly proliferating cells that mature into two distinct anatomic regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for the whole intestine, no studies have compared stem cells derived from the small and large intestine. Here, we report intrinsic differences between these two populations of cells. Primary epithelial cells isolated from human fetal small and large intestine and expanded with Wnt agonist, R-spondin 2, displayed differential expression of stem cell markers and separate hierarchical clustering of gene expression involved in differentiation, proliferation and disease pathways. Using a three-dimensional in vitro differentiation assay, single cells derived from small and large intestine formed distinct organoid architecture with cellular hierarchy similar to that found in primary tissue. Our characterization of human fetal intestinal stem cells defies the classical definition proposed by most where small and large intestine are repopulated by an identical epithelial stem cell and raises the question of the importance of intrinsic and extrinsic cues in the development of intestinal diseases.
Project description:Aim: The mammalian gut is the largest endocrine organ. Dozens of hormones secreted by enteroendocrine cells regulate a variety of physiological functions of the gut but also of the pancreas and brain. Here, we examined the role of the helix-loop-helix transcription factor ID2 during the differentiation of intestinal stem cells along the enteroendocrine lineage. Methods: To assess the functions of ID2 in the adult mouse small intestine, we used single-cell RNA sequencing, genetically modified mice, and organoid assays. Results: We found that in the adult intestinal epithelium Id2 is predominantly expressed in enterochromaffin and peptidergic enteroendocrine cells. Consistently, the loss of Id2 leads to the reduction of Chromogranin A-positive enteroendocrine cells. In contrast, the numbers of tuft cells are increased in Id2 mutant small intestine. Moreover, ablation of Id2 elevates the numbers of Serotonin+ enterochromaffin cells and Ghrelin+ X-cells in the posterior part of the small intestine. Finally, Id2 acts downstream of BMP signalling during the differentiation of Glucagon Like Peptide-1+ L-cells and Cholecystokinin+ I-cells towards Neurotensin+PYY+ N-cells. Conclusion: Id2 plays an important role in cell fate decisions in the adult small intestine. Firstly, ID2 suppresses the differentiation of secretory intestinal epithelial progenitors towards tuft cell lineage and thus controls host immune response on commensal and parasitic microbiota. Next, ID2 is essential for establishing a differentiation gradient for enterochromaffin and X-cells along the anterior-posterior axis of the gut. Finally, ID2 is necessary for the differentiation of N-cells thus ensuring a differentiation gradient along the crypt-villi axis.
Project description:We report the different enteroendocrine populations in the large intestine in mice based on their transcriptomics profile. Hormone, receptor and transcription factors are analysed for differential expression between the different cell clusters to give a comprehensive view of the different characterisitcs of the distal entereondocrine cells
Project description:goal of this study was A) to compare global RNA-sequencing (RNA-seq) profiles data of organoid- derived colonic epithelial cells cultured and differentiated in i) conventional suspension organoids cultures (n=3), ii) Colon Intestine-Chips cultured for 5 days under constant flow, without endothelium and stretch (n=4), iii) Colon Intestine-Chips cultured for 5 days under constant flow, without endothelium and with stretch (n=4), iv) Colon Intestine-Chips cultured for 5 days under constant flow, with endothelium and without stretch (n=4), v) Colon Intestine-Chips cultured for 5 days under constant flow, with endothelium and stretch (n=6), vi) Colon Intestine-Chips cultured for 8 days under constant flow, without endothelium and stretch (n=4), vii) Colon Intestine-Chips cultured for 8 days under constant flow, without endothelium and with stretch (n=4), viii) Colon Intestine-Chips cultured for 8 days under constant flow, with endothelium and without stretch (n=4), ix) Colon Intestine-Chips cultured for 8 days under constant flow, with endothelium and stretch (n=3), and B) to identify differences in transcriptome profiles of organoid- derived colonic epithelial cells between following two conditions, unstimulated and basolaterally stimulated with IL-22 (10pM, 100pM or 1nM) Colon Intestine-Chips.