Project description:Gene expression level of Clostridioides difficile (C. difficile) strain R20291 comparing control C. difficile carring pMTL84151 as vector plasmid with C. difficile conjugated with a pMTL84151-03890 gene. Goal was to determine the effects of 03890 gene conjugation on C. difficile strain R20291 gene expression.
Project description:Clostridioides difficile, the leading cause of antibiotic-associated diarrhoea worldwide, is a genetically diverse species which can metabolise a number of nutrient sources upon colonising a dysbiotic gut environment. Trehalose, a disaccharide sugar consisting of two glucose molecules bonded by an α 1,1-glycosidic bond, has been hypothesised to be involved in the emergence of C. difficile hypervirulence due to its increased utilisation by the RT027 and RT078 strains. Using RNA-sequencing analysis, we report the identification of a putative trehalose metabolism pathway which is induced during growth in trehalose: this has not been previously described within the C. difficile species. These data demonstrate the metabolic diversity exhibited by C. difficile which warrants further investigation to elucidate the molecular basis of trehalose metabolism within this important gut pathogen.
Project description:Clostridioides difficile interactions with the gut mucosa are crucial for colonisation and establishment of infection, however key infection events during the establishment of disease are still poorly defined. To better understand the initial events that occur during C. difficile colonisation, we employed a dual RNA-sequencing approach to study the host and bacterial transcriptomic profiles during C. difficile infection in a dual-environment in vitro human gut model. Temporal changes in gene expression were analysed over 3-24h post infection and comparisons were made with uninfected controls.
Project description:Clostridioides difficile can cause severe infections in the gastrointestinal tract and affects almost half a million people in the U.S every year. Upon establishment of infection, a strong immune response is induced. We sought to investigate the dynamics of the mucosal host response during C. difficile infection.
Project description:Defining the complex role of the microbiome in colorectal cancer (CRC) and the discovery of novel, pro-tumorigenic microbes are areas of active investigation. In the present study, culturing and reassociation experiments revealed that toxigenic strains of Clostridioides difficile drove the tumorigenic phenotype of a subset of CRC patient-derived mucosal slurries in germ-free ApcMin/+ mice. Tumorigenesis was dependent on the C. difficile toxin TcdB and was associated with induction of Wnt signaling, reactive oxygen species, and pro-tumorigenic mucosal immune responses marked by infiltration of activated myeloid cells and interleukin-17 (IL-17)-producing lymphoid and innate lymphoid cell subsets. In vitro, purified TcdB directly induced DNA strand breaks at low picomolar concentrations. These findings suggest that chronic colonization with toxigenic C. difficile is a potential driver of CRC in patients. Comparing scRNA-seq from mouse colon tissue 2 weeks after inoculation with different bacterial slurries
Project description:In this study, examinations were performed on how the ECM fungus Paxillus involutus degrade complex, plant and litter material by using elemental analyses, FTIR spectroscopy, pyrolysis-GC/MS, and synchronous fluorescence spectroscopy together with microarray analyses screening 12,214 gene models, derived from 454 sequenced cDNA libraries. Rineau, F., Roth, D., Shah, F., Smits, M., Johansson, T., Canbäck, B., Bjarke Olsen, P., Persson, P., Nedergaard Grell, M., Lange, L., & Tunlid, A. (201X) Expression levels tune enzymatic exploitation of plant litter material by ectomycorrhizal fungi (manuscript in preparation).
Project description:Metabolomic and transcriptomic analysis of changes in the exponential and stationary phase of Clostridioides difficile after cultivation in casamino acids medium (reference) and supplemented with L-lactate and the connection to toxin production.
Project description:Systems biology approach of Clostridioides difficile to analyze the temporal changes in the intracellular and extracellular metabolme, transcriptome and proteome along the growth curve in casamino acids medium and the connection to toxin production.
Project description:Metabolomic and transcriptomic analysis of changes in the exponential and stationary phase of Clostridioides difficile after cultivation in casamino acids medium (reference) and supplemented with L-lactate or glucose and the connection to toxin production.