Project description:In this study, we performed a comparative analysis of gut microbiota composition and gut microbiome-derived bacterial extracellular vesicles (bEVs) isolated from patients with solid tumours and healthy controls. After isolating bEVs from the faeces of solid tumour patients and healthy controls, we performed spectrometry analysis of their proteomes and next-generation sequencing (NGS) of the 16S gene. We also investigated the gut microbiomes of faeces from patientsand controls using 16S rRNA sequencing. Machine learning was used to classify the samples into patients and controls based on their bEVs and faecal microbiomes.
Project description:Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Investigators compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups.
Project description:Primary outcome(s): Analysis of the diversity and composition of the gut microbiome by 16S rRNA sequencing
Study Design: Observational Study Model : Others, Time Perspective : Prospective, Enrollment : 60, Biospecimen Retention : Collect & Archive- Sample with DNA, Biospecimen Description : Blood, Stool
Project description:We compared the microbiota of paired mouse caecal contents and faeces by applying a multi-omic approach, including 16S rDNA sequencing, shotgun metagenomics, and shotgun metaproteomics. The aim of the study was to verify whether faecal samples are a reliable proxy for the mouse colonic luminal microbiota, as well as to identify changes in taxonomy and functional activity between caecal and faecal microbial communities, which have to be carefully considered when using stool as sample for mouse gut microbiota investigations.
2017-03-31 | PXD004911 | Pride
Project description:microbial diversity on human faeces
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.